Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Glob Chang Biol ; 28(1): 285-295, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614285

RESUMO

Climate models predict that, in the coming decades, many arid regions will experience increasingly hot conditions and will be affected more frequently by drought. These regions are also experiencing rapid vegetation change, notably invasion by exotic grasses. Invasive grasses spread rapidly into native desert ecosystems due, in particular, to interannual variability in precipitation and periodic fires. The resultant destruction of non-fire-adapted native shrub and grass communities and of the inherent soil resource heterogeneity can yield invader-dominated grasslands. Moreover, recurrent droughts are expected to cause widespread physiological stress and mortality of both invasive and native plants, as well as the loss of soil resources. However, the magnitude of these effects may differ between invasive and native grasses, especially under warmer conditions, rendering the trajectory of vegetated communities uncertain. Using the Biosphere 2 facility in the Sonoran Desert, we evaluated the viability of these hypothesized relationships by simulating combinations of drought and elevated temperature (+5°C) and assessing the ecophysiological and mortality responses of both a dominant invasive grass (Pennisetum ciliare or buffelgrass) and a dominant native grass (Heteropogan contortus or tanglehead). While both grasses survived protracted drought at ambient temperatures by inducing dormancy, drought under warmed conditions exceeded the tolerance limits of the native species, resulting in greater and more rapid mortality than exhibited by the invasive. Thus, two major drivers of global environmental change, biological invasion and climate change, can be expected to synergistically accelerate ecosystem degradation unless large-scale interventions are enacted.


Assuntos
Mudança Climática , Ecossistema , Modelos Climáticos , Clima Desértico , Secas , Poaceae
2.
Ecol Lett ; 22(4): 583-592, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30687985

RESUMO

Phylogenetically informed trait comparisons across entire communities show promise in advancing community ecology. We use this approach to better understand the composition of a community of winter annual plants with multiple decades of monitoring and detailed morphological, phenological and physiological measurements. Previous research on this system revealed a physiological trade-off among dominant species that accurately predicts population and community dynamics. Here we expanded our investigation to 51 species, representing 96% of individual plants recorded over 30 years, and analysed trait relationships in the context of species abundance and phylogenetic relationships. We found that the functional-trait trade-off scales to the entire community, albeit with diminished strength. It is strongest for dominant species and weakens as progressively rarer species are included. The trade-off has been consistently expressed over three decades of environmental change despite some turnover in the identity of dominant species.


Assuntos
Fenótipo , Plantas , Filogenia , Estações do Ano
3.
New Phytol ; 222(3): 1284-1297, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30720871

RESUMO

Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine-scale observations critical to revealing ecological mechanisms underlying these changes have been lacking. To investigate fine-scale variation in leaf area with seasonality and drought we conducted monthly ground-based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structured LAI along axes of both canopy height and light environments. Upper canopy LAI increased during the dry season, whereas lower canopy LAI decreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understory LAI increased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015-2016 severe El Niño drought. Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.


Assuntos
Secas , Florestas , Luz , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Estações do Ano , Brasil , El Niño Oscilação Sul
4.
Glob Chang Biol ; 25(11): 3591-3608, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343099

RESUMO

Plant phenology-the timing of cyclic or recurrent biological events in plants-offers insight into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season-initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are "cryptic"-that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.


Assuntos
Ecossistema , Florestas , Brasil , Mudança Climática , Estações do Ano
5.
Nature ; 494(7437): 349-52, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23334410

RESUMO

Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE(e): above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE(e) in drier years that increased significantly with drought to a maximum WUE(e) across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought--that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE(e) may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands.


Assuntos
Mudança Climática/estatística & dados numéricos , Secas/estatística & dados numéricos , Ecossistema , Plantas/metabolismo , Água/metabolismo , Mudança Climática/história , Secas/história , História do Século XX , História do Século XXI , Poaceae/metabolismo , Chuva , Árvores/metabolismo , Ciclo Hidrológico
6.
New Phytol ; 219(3): 870-884, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29502356

RESUMO

Satellite and tower-based metrics of forest-scale photosynthesis generally increase with dry season progression across central Amazônia, but the underlying mechanisms lack consensus. We conducted demographic surveys of leaf age composition, and measured the age dependence of leaf physiology in broadleaf canopy trees of abundant species at a central eastern Amazon site. Using a novel leaf-to-branch scaling approach, we used these data to independently test the much-debated hypothesis - arising from satellite and tower-based observations - that leaf phenology could explain the forest-scale pattern of dry season photosynthesis. Stomatal conductance and biochemical parameters of photosynthesis were higher for recently mature leaves than for old leaves. Most branches had multiple leaf age categories simultaneously present, and the number of recently mature leaves increased as the dry season progressed because old leaves were exchanged for new leaves. These findings provide the first direct field evidence that branch-scale photosynthetic capacity increases during the dry season, with a magnitude consistent with increases in ecosystem-scale photosynthetic capacity derived from flux towers. Interactions between leaf age-dependent physiology and shifting leaf age-demographic composition are sufficient to explain the dry season photosynthetic capacity pattern at this site, and should be considered in vegetation models of tropical evergreen forests.


Assuntos
Carbono/metabolismo , Florestas , Folhas de Planta/fisiologia , Estações do Ano , Brasil , Clorofila/metabolismo , Gases/metabolismo , Fotossíntese , Estômatos de Plantas/fisiologia , Fatores de Tempo
7.
Ecology ; 99(3): 621-631, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29281753

RESUMO

The long-lived columnar saguaro cactus (Carnegiea gigantea) is among the most studied plants in the world. Long-term studies have shown saguaro establishment to be generally episodic and strongly influenced by precipitation and temperature. Water limitation through lower-than-average seasonal rainfall and elevated temperatures increasing evaporative loss can reduce survivorship of recent germinates. Thus, multi-year, extended drought could cause populations to decline as older saguaros die without replacement. Previous studies have related establishment to temporal variation in rainfall, but most studies have been on non-randomized plots in ideal habitat and thus might not have captured the full variability within the local area. We studied how saguaro establishment varied in space and which habitat features may buffer responses to drought on 36 4-ha plots located randomly across an elevation gradient, including substantial replication in landscape position (bajada, foothills, and slopes) in the two disjunct districts of Saguaro National Park in southern Arizona, USA. Recent, severe drought coincided with drastic declines in saguaro establishment across this ~25,000-ha area. Establishment patterns derived from the park-wide data set was strongly correlated with drought, but the Park's two districts and diversity of plots demonstrated substantially different population outcomes. Saguaro establishment was best explained by the interaction of drought and habitat type; establishment in bajada and foothill plots dropped to near-zero under the most severe periods of water limitation but remained higher in slope plots during the same time span. Combined with saguaro density estimates, these data suggest that the most suitable habitat type for saguaro establishment shifted to higher elevations during the time span of the recent drought. These results place into context the extent to which historical patterns of demography provide insight into future population dynamics in a changing climate and reveal the importance of understanding dynamics across the distribution of possible local habitat types with response to variation in weather.


Assuntos
Cactaceae , Secas , Arizona , Clima , Ecossistema
8.
Am J Bot ; 105(7): 1188-1197, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30011076

RESUMO

PREMISE OF STUDY: Mechanisms by which invasive species succeed across multiple novel environmental contexts are poorly understood. Functional traits show promise for identifying such mechanisms, yet we lack knowledge of which functional traits are critical for success and how they vary across invaded ranges and with environmental features. We evaluated the widespread recent invasion of Sahara mustard (Brassica tournefortii) in the southwestern United States to understand the extent of functional trait variation across the invaded range and how such variation is related to spatial and climatic gradients. METHODS: We used a common garden approach, growing two generations of plants in controlled conditions sourced from 10 locations across the invaded range. We measured variation within and among populations in phenological, morphological, and physiological traits, as well as performance. KEY RESULTS: We found nine key traits that varied among populations. These traits were related to phenology and early growth strategies, such as the timing of germination and flowering, as well as relative allocation of biomass to reproduction and individual seed mass. Trait variation was related most strongly to variation in winter precipitation patterns across localities, though variations in temperature and latitude also had significant contributions. CONCLUSIONS: Our results identify key functional traits of this invasive species that showed significant variation among introduced populations across a broad geographic and climatic range. Further, trait variation among populations was strongly related to key climatic variables, which suggests that population divergence in these traits may explain the successful colonization of Sahara mustard across its invaded US range.


Assuntos
Mostardeira/fisiologia , Biomassa , Clima , Germinação , Espécies Introduzidas , Mostardeira/genética , Mostardeira/crescimento & desenvolvimento , Fenótipo , Reprodução , Estações do Ano , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Sudoeste dos Estados Unidos , Temperatura
9.
Oecologia ; 184(1): 25-41, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28343362

RESUMO

Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study's result became the following study's hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver-response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate-ecosystem interactions at this site than traditional deductive analyses alone.


Assuntos
Clima , Dióxido de Carbono/metabolismo , Ecossistema , Florestas , Estações do Ano , Árvores/metabolismo
10.
Ecology ; 97(1): 250-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27008793

RESUMO

Early life-cycle events play critical roles in determining the population and community dynamics of plants. The ecology of seeds and their germination patterns can determine range limits, adaptation to environmental variation, species diversity, and community responses to climate change. Understanding the adaptive consequences and environmental filtering of such functional traits will allow us to explain and predict ecological dynamics. Here we quantify key functional aspects of germination physiology and relate them to an existing functional ecology framework to explain long-term population dynamics for 13 species of desert annuals near Tucson, Arizona, USA. Our goal was to assess the extent to which germination functional biology contributes to long-term population processes in nature. Some of the species differences in base, optimum, and maximum temperatures for germination, thermal times to germination, and base water potentials for germination were strongly related to 20-yr mean germination fractions, 25-yr average germination dates, seed size, and long-term demographic variation. Comparisons of germination fraction, survival, and fecundity vs. yearly changes in population size found significant roles for all three factors, although in varying proportions for different species. Relationships between species' germination physiologies and relative germination fractions varied across years, with fast-germinating species being favored in years with warm temperatures during rainfall events in the germination season. Species with low germination fractions and high demographic variance have low integrated water-use efficiency, higher vegetative growth rates, and smaller, slower-germinating seeds. We have identified and quantified a number of functional traits associated with germination biology that play critical roles in ecological population dynamics.


Assuntos
Clima Desértico , Ecossistema , Germinação/fisiologia , Plantas/classificação , Aptidão Genética , Plantas/genética , Dinâmica Populacional , Estresse Fisiológico , Fatores de Tempo , Tempo (Meteorologia)
11.
Ecol Lett ; 18(3): 221-35, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25522778

RESUMO

The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18-28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time-series data and facilitating new hypothesis generation and additional research.


Assuntos
Fenômenos Ecológicos e Ambientais , Ecossistema , Modelos Biológicos , Tempo , Árvores , Teorema de Bayes , Modelos Estatísticos , Solo , Processos Estocásticos
12.
New Phytol ; 202(2): 442-454, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24417567

RESUMO

Understanding how exogenous and endogenous factors and above-ground-below-ground linkages modulate carbon dynamics is difficult because of the influences of antecedent conditions. For example, there are variable lags between above-ground assimilation and below-ground efflux, and the duration of antecedent periods are often arbitrarily assigned. Nonetheless, developing models linking above- and below-ground processes is crucial for estimating current and future carbon dynamics. We collected data on leaf-level photosynthesis (Asat ) and soil respiration (Rsoil ) in different microhabitats (under shrubs vs under bunchgrasses) in the Sonoran Desert. We evaluated timescales over which endogenous and exogenous factors control Rsoil by analyzing data in the context of a semimechanistic temperature-response model of Rsoil that incorporated effects of antecedent exogenous (soil water) and endogenous (Asat ) conditions. For both microhabitats, antecedent soil water and Asat significantly affected Rsoil , but Rsoil under shrubs was more sensitive to Asat than that under bunchgrasses. Photosynthetic rates 1 and 3 d before the Rsoil measurement were most important in determining current-day Rsoil under bunchgrasses and shrubs, respectively, indicating a significant lag effect. Endogenous and exogenous controls are critical drivers of Rsoil , but the relative importance and the timescale over which each factor affects Rsoil depends on above-ground vegetation and ecosystem structure characteristics.


Assuntos
Dióxido de Carbono/fisiologia , Carbono/fisiologia , Ecossistema , Fotossíntese , Folhas de Planta/fisiologia , Solo , Água , Clima Desértico , Poaceae , Prosopis , Temperatura
13.
Glob Chang Biol ; 20(3): 879-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24115504

RESUMO

Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric (CO2 ) because of their high potential growth rates and flexible phenology. During the 10-year life of the Nevada Desert FACE (free-air CO2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in response to long-term elevated (CO2 ) exposure. The dominant forb and grass species exhibited accelerated phenology, increased size, and higher reproduction at elevated (CO2 ) in a wet El Niño year near the beginning of the experiment. However, a multiyear dry cycle resulted in no increases in productivity or reproductive allocation for the remainder of the experiment. At the community level, early indications of increased dominance of the invasive Bromus rubens at elevated (CO2 ) gave way to an absence of Bromus in the community during a drought cycle, with a resurgence late in the experiment in response to higher rainfall and a corresponding high density of Bromus in a final soil seed bank analysis, particularly at elevated (CO2 ). This long-term experiment resulted in two primary conclusions: (i) elevated (CO2 ) does not increase productivity of annuals in most years; and (ii) relative stimulation of invasive grasses will likely depend on future precipitation, with a wetter climate favoring invasive grasses but currently predicted greater aridity favoring native dicots.


Assuntos
Dióxido de Carbono , Fenômenos Fisiológicos Vegetais , Biomassa , Bromus/fisiologia , Clima Desértico , Ecossistema , Espécies Introduzidas , Lepidium/fisiologia , Nevada , Reprodução , Estações do Ano
14.
Glob Chang Biol ; 20(7): 2198-210, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777485

RESUMO

The combined effects of vegetation and climate change on biosphere-atmosphere water vapor (H2 O) and carbon dioxide (CO2 ) exchanges are expected to vary depending, in part, on how biotic activity is controlled by and alters water availability. This is particularly important when a change in ecosystem composition alters the fractional covers of bare soil, grass, and woody plants so as to influence the accessibility of shallower vs. deeper soil water pools. To study this, we compared 5 years of eddy covariance measurements of H2 O and CO2 fluxes over a riparian grassland, shrubland, and woodland. In comparison with the surrounding upland region, groundwater access at the riparian sites increased net carbon uptake (NEP) and evapotranspiration (ET), which were sustained over more of the year. Among the sites, the grassland used less of the stable groundwater resource, and increasing woody plant density decoupled NEP and ET from incident precipitation (P), resulting in greater exchange rates that were less variable year to year. Despite similar gross patterns, how groundwater accessibility affected NEP was more complex than ET. The grassland had higher respiration (Reco ) costs. Thus, while it had similar ET and gross carbon uptake (GEP) to the shrubland, grassland NEP was substantially less. Also, grassland carbon fluxes were more variable due to occasional flooding at the site, which both stimulated and inhibited NEP depending upon phenology. Woodland NEP was large, but surprisingly similar to the less mature, sparse shrubland, even while having much greater GEP. Woodland Reco was greater than the shrubland and responded strongly and positively to P, which resulted in a surprising negative NEP response to P. This is likely due to the large accumulation of carbon aboveground and in the surface soil. These long-term observations support the strong role that water accessibility can play when determining the consequences of ecosystem vegetation change.


Assuntos
Ciclo do Carbono , Mudança Climática , Ecossistema , Ciclo Hidrológico , Arizona , Florestas , Pradaria , Estações do Ano
15.
Am Nat ; 182(2): 191-207, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852354

RESUMO

Trade-offs among traits are important for maintaining biodiversity, but the role of natural selection in their construction is not often known. It is possible that trade-offs reflect fundamental constraints, negative correlational selection, or directional selection operating on costly, redundant traits. In a Sonoran Desert community of winter annual plants, we have identified a trade-off between relative growth rate and water-use efficiency among species, such that species with high relative growth rate have low water-use efficiency and vice versa. We measured selection on water-use efficiency, relative growth rate, and underlying traits within populations of four species at two study sites with different average climates. Phenotypic trait correlations within species did not match the among-species trade-off. In fact, for two species with high water-use efficiency, individuals with high relative growth rate also had high water-use efficiency. All populations experienced positive directional selection for water-use efficiency and relative growth rate. Selection tended to be stronger on water-use efficiency at the warmer and drier site, and selection on relative growth rate tended to be stronger at the cooler and wetter site. Our results indicate that directional natural selection favors a phenotype not observed among species in the community, suggesting that the among-species trade-off could be due to pervasive genetic constraints, perhaps acting in concert with processes of community assembly.


Assuntos
Ecossistema , Magnoliopsida/genética , Fenótipo , Seleção Genética , Clima Desértico , Magnoliopsida/crescimento & desenvolvimento , Água/fisiologia
16.
New Phytol ; 197(4): 1142-1151, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23311898

RESUMO

Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function. We report analysis of foliar nonstructural carbohydrates (NSCs) and associated physiology from a previous experiment where earlier drought-induced mortality of Pinus edulis at elevated temperatures was associated with greater cumulative respiration. Here, we predicted faster NSC decline for warmed trees than for ambient-temperature trees. Foliar NSC in droughted trees declined by 30% through mortality and was lower than in watered controls. NSC decline resulted primarily from decreased sugar concentrations. Starch initially declined, and then increased above pre-drought concentrations before mortality. Although temperature did not affect NSC and sugar, starch concentrations ceased declining and increased earlier with higher temperatures. Reduced foliar NSC during lethal drought indicates a carbon metabolism role in mortality mechanism. Although carbohydrates were not completely exhausted at mortality, temperature differences in starch accumulation timing suggest that carbon metabolism changes are associated with time to death. Drought mortality appears to be related to temperature-dependent carbon dynamics concurrent with increasing hydraulic stress in P. edulis and potentially other similar species.


Assuntos
Metabolismo dos Carboidratos , Carbono/metabolismo , Secas , Pinus/fisiologia , Estresse Fisiológico , Mudança Climática , Pinus/metabolismo , Folhas de Planta/metabolismo , Temperatura , Água/metabolismo , Xilema/metabolismo
17.
Am J Bot ; 100(10): 2009-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24095798

RESUMO

PREMISE OF THE STUDY: A functional approach to investigating competitive interactions can provide a mechanistic understanding of processes driving population dynamics, community assembly, and the maintenance of biodiversity. In Sonoran Desert annual plants, a trade-off between relative growth rate (RGR) and water-use efficiency (WUE) contributes to species differences in population dynamics that promote long-term coexistence. Traits underlying this trade-off explain variation in demographic responses to precipitation as well as life history and phenological patterns. Here, we ask how these traits mediate competitive interactions. • METHODS: We conducted competition trials for three species occupying different positions along the RGR-WUE trade-off axis and compared the effects of competition at high and low soil moisture. We compared competitive effect (ability to suppress neighbors) and competitive response (ability to withstand competition from neighbors) among species. • KEY RESULTS: The RGR-WUE trade-off predicted shifts in competitive responses at different soil moistures. The high-RGR species was more resistant to competition in high water conditions, while the opposite was true for the high-WUE species. The intermediate RGR species tended to have the strongest impact on all neighbors, so competitive effects did not scale directly with differences in RGR and WUE among competitors. • CONCLUSIONS: Our results reveal mechanisms underlying long-term variation in fitness: high-RGR species perform better in years with large, frequent rain events and can better withstand competition under wetter conditions. The opposite is true for high-WUE species. Such resource-dependent responses strongly influence community dynamics and can promote coexistence in variable environments.


Assuntos
Clima Desértico , Magnoliopsida/fisiologia , Desenvolvimento Vegetal/fisiologia , Estações do Ano , Água/fisiologia , Arizona , Biomassa , Sementes/crescimento & desenvolvimento
18.
Am J Bot ; 100(7): 1369-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23838034

RESUMO

Global change requires plant ecologists to predict future states of biological diversity to aid the management of natural communities, thus introducing a number of significant challenges. One major challenge is considering how the many interacting features of biological systems, including ecophysiological processes, plant life histories, and species interactions, relate to performance in the face of a changing environment. We have employed a functional trait approach to understand the individual, population, and community dynamics of a model system of Sonoran Desert winter annual plants. We have used a comprehensive approach that connects physiological ecology and comparative biology to population and community dynamics, while emphasizing both ecological and evolutionary processes. This approach has led to a fairly robust understanding of past and contemporary dynamics in response to changes in climate. In this community, there is striking variation in physiological and demographic responses to both precipitation and temperature that is described by a trade-off between water-use efficiency (WUE) and relative growth rate (RGR). This community-wide trade-off predicts both the demographic and life history variation that contribute to species coexistence. Our framework has provided a mechanistic explanation to the recent warming, drying, and climate variability that has driven a surprising shift in these communities: cold-adapted species with more buffered population dynamics have increased in relative abundance. These types of comprehensive approaches that acknowledge the hierarchical nature of biology may be especially useful in aiding prediction. The emerging, novel and nonstationary climate constrains our use of simplistic statistical representations of past plant behavior in predicting the future, without understanding the mechanistic basis of change.


Assuntos
Clima Desértico , Ecossistema , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Estações do Ano , Acebutolol , Mudança Climática , Monitoramento Ambiental , Fotossíntese , Dinâmica Populacional
19.
New Phytol ; 193(4): 929-938, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22150067

RESUMO

The response of nocturnal stomatal conductance (g(s,n)) to rising atmospheric CO(2) concentration ([CO(2)]) is currently unknown, and may differ from responses of daytime stomatal conductance (g(s,d)). Because night-time water fluxes can have a significant impact on landscape water budgets, an understanding of the effects of [CO(2)] and temperature on g(s,n) is crucial for predicting water fluxes under future climates. Here, we examined the effects of [CO(2)] (280, 400 and 640 µmol mol(-1)), temperature (ambient and ambient + 4°C) and drought on g(s,n,) and g(s,d) in Eucalyptus sideroxylon saplings. g(s,n) was substantially higher than zero, averaging 34% of g(s,d). Before the onset of drought, g(s,n) increased by 85% when [CO(2)] increased from 280 to 640 µmol mol(-1), averaged across both temperature treatments. g(s,n) declined with drought, but an increase in [CO(2)] slowed this decline. Consequently, the soil water potential at which g(s,n) was zero (Ψ(0)) was significantly more negative in elevated [CO(2)] and temperature treatments. g(s,d) showed inconsistent responses to [CO(2)] and temperature. g (s,n) may be higher in future climates, potentially increasing nocturnal water loss and susceptibility to drought, but cannot be predicted easily from g(s,d). Therefore, predictive models using stomatal conductance must account for both g(s,n) and g(s,d) when estimating ecosystem water fluxes.


Assuntos
Dióxido de Carbono , Secas , Eucalyptus/fisiologia , Estômatos de Plantas/fisiologia , Clima , Ecossistema , Meio Ambiente , Solo , Temperatura
20.
New Phytol ; 194(2): 464-476, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22348404

RESUMO

Night-time stomatal conductance (g(night)) occurs in many ecosystems, but the g(night) response to environmental drivers is relatively unknown, especially in deserts. Here, we conducted a Bayesian analysis of stomatal conductance (g) (N=5013) from 16 species in the Sonoran, Chihuahuan, Mojave and Great Basin Deserts (North America). We partitioned daytime g (g(day)) and g(night) responses by describing g as a mixture of two extreme (dark vs high light) behaviors. Significant g(night) was observed across 15 species, and the g(night) and g(day) behavior differed according to species, functional type and desert. The transition between extreme behaviors was determined by light environment, with the transition behavior differing between functional types and deserts. Sonoran and Chihuahuan C(4) grasses were more sensitive to vapor pressure difference (D) at night and soil water potential (Ψ(soil)) during the day, Great Basin C(3) shrubs were highly sensitive to D and Ψ(soil) during the day, and Mojave C(3) shrubs were equally sensitive to D and Ψ(soil) during the day and night. Species were split between the exhibition of isohydric or anisohydric behavior during the day. Three species switched from anisohydric to isohydric behavior at night. Such behavior, combined with differential D, Ψ(soil) and light responses, suggests that different mechanisms underlie g(day) and g(night) regulation.


Assuntos
Escuridão , Clima Desértico , Fenômenos Fisiológicos Vegetais , Estômatos de Plantas/fisiologia , Modelos Biológicos , América do Norte , Transpiração Vegetal/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa