Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 353, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693493

RESUMO

BACKGROUND: Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS: In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS: In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.


Assuntos
Acetatos , Glucosinolatos , Glicosídeo Hidrolases , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Regulação da Expressão Gênica de Plantas , Brassicaceae/genética , Brassicaceae/metabolismo , Brassicaceae/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética
2.
Mar Drugs ; 22(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38393064

RESUMO

This study aimed to investigate the regulation of fucoxanthin (FX) biosynthesis under various nitrogen conditions to optimize FX productivity in Phaeodactylum tricornutum. Apart from light, nitrogen availability significantly affects the FX production of microalgae; however, the underlying mechanism remains unclear. In batch culture, P. tricornutum was cultivated with normal (NN, 0.882 mM sodium nitrate), limited (LN, 0.22 mM), and high (HN, 8.82 mM) initial nitrogen concentrations in f/2 medium. Microalgal growth and photosynthetic pigment production were examined, and day 5 samples were subjected to fucoxanthin-chlorophyll a/c-binding protein (FCP) proteomic and transcriptomic analyses. The result demonstrated that HN promoted FX productivity by extending the exponential growth phase for higher biomass and FX accumulation stage (P1), showing a continuous increase in FX accumulation on day 6. Augmented FX biosynthesis via the upregulation of carotenogenesis could be primarily attributed to enhanced FCP formation in the thylakoid membrane. Key proteins, such as LHC3/4, LHCF8, LHCF5, and LHCF10, and key genes, such as PtPSY, PtPDS, and PtVDE, were upregulated under nitrogen repletion. Finally, the combination of low light and HN prolonged the P1 stage to day 10, resulting in maximal FX productivity to 9.82 ± 0.56 mg/L/day, demonstrating an effective strategy for enhancing FX production in microalgae cultivation.


Assuntos
Diatomáceas , Microalgas , Xantofilas , Clorofila A , Nitrogênio/metabolismo , Proteômica , Diatomáceas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa