RESUMO
BACKGROUND: The use of probiotic lactic acid bacteria as a mucosal vaccine vector is considered a promising alternative compared to the use of other microorganisms because of its "Generally Regarded as Safe" status, its potential adjuvant properties, and its tolerogenicity to the host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19), is highly transmissible and pathogenic. This study aimed to determine the potential of Lactiplantibacillus plantarum expressing SARS-CoV-2 epitopes as a mucosal vaccine against SARS-CoV-2. RESULTS: In this study, the possible antigenic determinants of the spike (S1-1, S1-2, S1-3, and S1-4), membrane (ME1 and ME2), and envelope (E) proteins of SARS-CoV-2 were predicted, and recombinant L. plantarum strains surface-displaying these epitopes were constructed. Subsequently, the immune responses induced by these recombinant strains were compared in vitro and in vivo. Most surface-displayed epitopes induced pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α and interleukin (IL)-6] and anti-inflammatory cytokines (IL-10) in lipopolysaccharide-induced RAW 264.7, with the highest anti-inflammatory to pro-inflammatory cytokine ratio in the S1-1 and S1-2 groups, followed by that in the S1-3 group. When orally administered of recombinant L. plantarum expressing SARS-CoV-2 epitopes in mice, all epitopes most increased the expression of IL-4, along with induced levels of TNF-α, interferon-gamma, and IL-10, specifically in spike protein groups. Thus, the surface expression of epitopes from the spike S1 protein in L. plantarum showed potential immunoregulatory effects, suggesting its ability to potentially circumvent hyperinflammatory states relevant to monocyte/macrophage cell activation. At 35 days post immunization (dpi), serum IgG levels showed a marked increase in the S1-1, S1-2, and S1-3 groups. Fecal IgA levels increased significantly from 21 dpi in all the antigen groups, but the boosting effect after 35 dpi was explicitly observed in the S1-1, S1-2, and S1-3 groups. Thus, the oral administration of SARS-CoV-2 antigens into mice induced significant humoral and mucosal immune responses. CONCLUSION: This study suggests that L. plantarum is a potential vector that can effectively deliver SARS-CoV-2 epitopes to intestinal mucosal sites and could serve as a novel approach for SARS-CoV-2 mucosal vaccine development.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Interleucina-10 , Imunidade nas Mucosas , Epitopos , Fator de Necrose Tumoral alfa , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Imunização , CitocinasRESUMO
The ideality factor (nid ) and photoluminescence (PL) analyses assess charge recombination characteristics in perovskite solar cells (PeSCs). However, their correlations with open-circuit voltage (Voc ) are often found to be complicated depending on the recombination types in the devices. Herein, the correlation of nid , PL characteristics and Voc is elucidated depending on the interfacial crystal quality in triple-cation mixed-halide perovskite, Cs0.05 (MA0.17 FA0.83 )0.95 Pb(I0.83 Br0.17 )3 , deposited on different hole transport layers (HTLs). In the devices with low quality interfacial crystals, Voc increases together with nid , which originates from the light intensity-dependence of majority carrier at the interface. Meanwhile, a negative correlation between Voc and nid is observed for devices with high quality interfacial crystals. The authors discuss the cases that PL enhancement by the improvement of overall crystal quality can fail to correlate with a Voc increase if interfacial crystal quality becomes worse. The study highlights that interfacial crystal quality evaluation can help to understand charge recombination via nid and PL measurements, and more importantly provide information of which defect engineering between at the interface and in the bulk would be more effective for device optimization.
RESUMO
We demonstrate novel all-back-contact Si nanohole solar cells via the simple direct deposition of molybdenum oxide (MoOx) and lithium fluoride (LiF) thin films as dopant-free and selective carrier contacts (SCCs). This approach is in contrast to conventionally used high-temperature thermal doping processes, which require multistep patterning processes to produce diffusion masks. Both MoOx and LiF thin films are inserted between the Si absorber and Al electrodes interdigitatedly at the rear cell surfaces, facilitating effective carrier collection at the MoOx/Si interface and suppressed recombination at the Si and LiF/Al electrode interface. With optimized MoOx and LiF film thickness as well as the all-back-contact design, our 1 cm(2) Si nanohole solar cells exhibit a power conversion efficiency of up to 15.4%, with an open-circuit voltage of 561 mV and a fill factor of 74.6%. In particular, because of the significant reduction in Auger/surface recombination as well as the excellent Si-nanohole light absorption, our solar cells exhibit an external quantum efficiency of 83.4% for short-wavelength light (â¼400 nm), resulting in a dramatic improvement (54.6%) in the short-circuit current density (36.8 mA/cm(2)) compared to that of a planar cell (23.8 mA/cm(2)). Hence, our all-back-contact design using MoOx and LiF films formed by a simple deposition process presents a unique opportunity to develop highly efficient and low-cost nanostructured Si solar cells.
RESUMO
Material design for direct heat-to-electricity conversion with substantial efficiency essentially requires cooperative control of electrical and thermal transport. Bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3), displaying the highest thermoelectric power at room temperature, are also known as topological insulators (TIs) whose electronic structures are modified by electronic confinements and strong spin-orbit interaction in a-few-monolayers thickness regime, thus possibly providing another degree of freedom for electron and phonon transport at surfaces. Here, we explore novel thermoelectric conversion in the atomic monolayer steps of a-few-layer topological insulating Bi2Te3 (n-type) and Sb2Te3 (p-type). Specifically, by scanning photoinduced thermoelectric current imaging at the monolayer steps, we show that efficient thermoelectric conversion is accomplished by optothermal motion of hot electrons (Bi2Te3) and holes (Sb2Te3) through 2D subbands and topologically protected surface states in a geometrically deterministic manner. Our discovery suggests that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by direct exploiting of quantum nature of TIs, thus providing a new design rule for the compact thermoelectric circuitry at the ultimate size limit.
RESUMO
One-dimensional (1D) heteroepitaxy with an abrupt interface is essential to construct the 1D heterojunctions required for photonic and electronic devices. During catalytic 1D heteroepitaxial growth, however, the heterojunctions are generically kinked and composition-diffused across the interfaces. Here, we report a simple synthetic route for straight 1D heteroepitaxy with atomically sharp interfaces of group IV(Ge)/group II-VI(ZnSe) nanowires (NWs) during Au-catalytic growth. Specifically, it is discovered that eliminating residues in Au catalysts by Se vapour treatments lowers the energy barrier for the Ge NW axial heteroepitaxy on ZnSe NWs, and forms atomically abrupt heterointerfaces. We verified such 1D variation in the local electronic band structure of the grown Ge/ZnSe NW heterojunctions with spatially resolved photocurrent measurements.
RESUMO
Resistive switching random-access memory (ReRAM) devices based on chalcogenide solid electrolytes have recently become a promising candidate for future low-power nanoscale nonvolatile memory application. The resistive switching mechanism of ReRAM is based on the formation and rupture of conductive filament (CF) in the chalcogenide solid electrolyte layers. However, the random diffusion of metal ions makes it hard to control the CF formation, which is one of the major obstacles to improving device performance of ReRAM devices. We demonstrate the spin-coated metal nanocrystals (NCs) enhance the bipolar resistive switching (BRS) memory characteristics. Compared to the Ag/Ge0.5Se0.5/Pt structure, excellent resistive switching memory characteristics were obtained from the Ag/Ge0.5Se0.5/Ag NCs/Pt structure. Ag NCs improve the uniformity of resistance values and reduce the reset voltage and current. A stable DC endurance (> 100 cycles) and a high data retention (> 10(4) sec) were achieved by spin coating the Ag NCs on the Pt bottom electrode for ReRAMs.
Assuntos
Eletrodos , Eletrólitos , Germânio/química , Nanopartículas , Selênio/química , Prata/químicaRESUMO
Breast cancer is the most common type of cancer in women, and early abnormality detection using mammography can significantly improve breast cancer survival rates. Diverse datasets are required to improve the training and validation of deep learning (DL) systems for autonomous breast cancer diagnosis. However, only a small number of mammography datasets are publicly available. This constraint has created challenges when comparing different DL models using the same dataset. The primary contribution of this study is the comprehensive description of a selection of currently available public mammography datasets. The information available on publicly accessible datasets is summarized and their usability reviewed to enable more effective models to be developed for breast cancer detection and to improve understanding of existing models trained using these datasets. This study aims to bridge the existing knowledge gap by offering researchers and practitioners a valuable resource to develop and assess DL models in breast cancer diagnosis.
Assuntos
Neoplasias da Mama , Aprendizado Profundo , Feminino , Humanos , Mamografia , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de CâncerRESUMO
The efficiency of copper indium gallium selenide (CIGS) solar cells that use transparent conductive oxide (TCO) as the top electrode decreases significantly as the device area increases owing to the poor electrical properties of TCO. Therefore, high-efficiency, large-area CIGS solar cells require the development of a novel top electrode with high transmittance and conductivity. In this study, a microgrid/TCO hybrid electrode is designed to minimize the optical and resistive losses that may occur in the top electrode of a CIGS solar cell. In addition, the buffer layer of the CIGS solar cells is changed from the conventional CdS buffer to a dry-processed wide-band gap ZnMgO (ZMO) buffer, resulting in increased device efficiency by minimizing parasitic absorption in the short-wavelength region. By optimizing the combination of ZMO buffer and the microgrid/TCO hybrid electrode, a device efficiency of up to 20.5% (with antireflection layers) is achieved over a small device area of 5 mm × 5 mm (total area). Moreover, CIGS solar cells with an increased device area of up to 20 mm × 70 mm (total area) exhibit an efficiency of up to 19.7% (with antireflection layers) when a microgrid/TCO hybrid electrode is applied. Thus, this study demonstrates the potential for high-efficiency, large-area CIGS solar cells with novel microgrid electrodes.
RESUMO
The photophysical properties in solution of three generations of carbazole-based dendrons and dendrimers with fluorenyl surface groups were studied using steady-state, time-resolved femtosecond transient absorption and anisotropy, and coherent two-dimensional ultraviolet spectroscopy. It was found that increasing the generation caused a switch in the nature of the emissive state between the first-generation compounds and the second- and third-generation dendrimers. Time-resolved anisotropy measurements revealed low initial anisotropies that decreased with increasing dendrimer generation consistent with increasing intradendrimer interchromophore coupling. Two-dimensional UV spectroscopy showed that the signal from the second- and third-generation dendrimers is the product of multiple chromophores interacting. The maximum number of interacting chromophores is reached by the second generation.
RESUMO
Large spectral modulation in the photon-to-electron conversion near the absorption band-edge of a semiconductor by an applied electrical field can be a basis for efficient electro-optical modulators. This electro-absorption effect in Group IV semiconductors is, however, inherently weak, and this poses the technological challenges for their electro-photonic integration. Here we report unprecedentedly large electro-absorption susceptibility at the direct band-edge of intrinsic Ge nanowire (NW) photodetectors, which is strongly diameter-dependent. We provide evidence that the large spectral shift at the 1.55 µm wavelength, enhanced up to 20 times larger than Ge bulk crystals, is attributed to the internal Franz-Keldysh effect across the NW surface field of ~10(5) V/cm, mediated by the strong photoconductive gain. This classical size-effect operating at the nanometer scale is universal, regardless of the choice of materials, and thus suggests general implications for the monolithic integration of Group IV photonic circuits.
RESUMO
Planar defects in compound (III-V and II-VI) semiconductor nanowires (NWs), such as twin and stacking faults, are universally formed during the catalytic NW growth, and they detrimentally act as static disorders against coherent electron transport and light emissions. Here we report a simple synthetic route for planar-defect free II-VI NWs by tunable alloying, i.e. Cd(1-x)Zn(x)Te NWs (0 ≤ x ≤ 1). It is discovered that the eutectic alloying of Cd and Zn in Au catalysts immediately alleviates interfacial instability during the catalytic growth by the surface energy minimization and forms homogeneous zinc blende crystals as opposed to unwanted zinc blende/wurtzite mixtures. As a direct consequence of the tunable alloying, we demonstrated that intrinsic energy band gap modulation in Cd(1-x)Zn(x)Te NWs can exploit the tunable spectral and temporal responses in light detection and emission in the full visible range.
Assuntos
Ligas/química , Cádmio/química , Ouro/química , Nanofios/química , Telúrio/química , Zinco/química , Catálise , Tamanho da Partícula , Semicondutores , Propriedades de SuperfícieRESUMO
In metal halide perovskites, charge transport in the bulk of the films is influenced by trapping and release and nonradiative recombination at ionic and crystal defects. Thus, mitigating the formation of defects during the synthesis process of perovskites from precursors is required for better device performance. An in-depth understanding of the nucleation and growth mechanisms of perovskite layers is crucial for the successful solution processing of organic-inorganic perovskite thin films for optoelectronic applications. In particular, heterogeneous nucleation, which occurs at the interface, must be understood in detail, as it has an effect on the bulk properties of perovskites. This review presents a detailed discussion on the controlled nucleation and growth kinetics of interfacial perovskite crystal growth. Heterogeneous nucleation kinetics can be controlled by modifying the perovskite solution and the interfacial properties of perovskites adjacent to the underlaying layer and to the air interface. As factors influencing the nucleation kinetics, the effects of surface energy, interfacial engineering, polymer additives, solution concentration, antisolvents, and temperature are discussed. The importance of the nucleation and crystal growth of single-crystal, nanocrystal, and quasi-two-dimensional perovskites is also discussed with respect to the crystallographic orientation.
RESUMO
Structural defects at the surface and within the bulk of perovskite films hinder efficient energy conversion in solar cells due to the loss of charge carriers through non-radiative recombination. Post-passivation approaches have been proposed in an attempt to eliminate surface defects, with bulk defects being rarely studied. Moreover, it is of interest to investigate the difference in the perovskite crystal growth with and without simultaneous defect passivation. Here, we study a new crystal growth strategy to realize high-quality triple-cation perovskite crystals via utilizing microwave irradiation combined with a continuous supply of defect passivators from a reservoir solution of trioctyl-n-phosphine oxide (TOPO). The proposed method facilitates the growth of perovskite crystals with TOPO ligand coordination in the whole film region. Consequently, the processed perovskite film demonstrates distinctive features of significantly suppressed non-radiative recombination, substantial defect reduction and morphological changes compared to the perovskites processed by conventional thermal annealing. The power conversion efficiency is enhanced owing to the improved open-circuit voltage (Voc) and short-circuit current (Jsc). The results of this study are expected to assist in the development of diverse approaches for the control of perovskite crystal growth with in situ defect passivation toward high efficiency in solar cells.
RESUMO
Solution-based blended polymer materials are promising for electronic applications in many fields. However, determining a controllable method to achieve electronically active organic films through the practical liquid deposition process is very challenging. In this study, we suggest employing hybrid binary organic mixture inks (an insulating polymer polystyrene (PS)) and an organic semiconductor (6,13-bis(triisopropylsilylethnyl)pentacene (TIPS-pentacene)) to manage and enhance the characteristics of TIPS-pentacene organic layers using a bar-coating method. Binary mixtures with PS molecules can provide various microstructures, crystal orientations, and molecular stacking of the active TIPS-pentacene organic layers under the proper fabrication parameters during bar-coating. Varying the molecular weight of the PS mixture, weight percentage of the TIPS-pentacene, and deposition parameters, such as the bar-coating speed, direction, and contact angles between the crystal orientation of TIPS-pentacene and Au electrodes, is crucial to guarantee high-electronic properties. The electrodes with TIPS-pentacene/PS (MW = 4000) binary films at a 40 wt% TIPS-pentacene ratio demonstrate the outstanding room-temperature field-effect mobility of 1.215 cm2 V-1 s-1, four times higher than that of pure TIPS-pentacene transistors (100 wt%). The performance improvement of the TIPS-pentacene layers is highly attributed to the ideal spherulite structure and thick molecular stacking properties, which can guarantee favorable charge transport paths through organic films. These findings demonstrate a promising strategy for blending organic applications to improve the performance of organic electronic devices using practical fabrication processes.
RESUMO
Lactic acid bacteria (LAB) expressing foreign antigens have great potential as mucosal vaccines. Our previous study reported that recombinant Lactiplantibacillus plantarum SK156 displaying SARS-CoV-2 spike S1 epitopes elicited humoral and cell-mediated immune responses in mice. Here, we further examined the effect of the LAB-based mucosal vaccine on gut microbiome composition and function, and gut microbiota-derived metabolites. Forty-nine (49) female BALB/c mice were orally administered L. plantarum SK156-displaying SARS-CoV-2 spike S1 epitopes thrice (at 14-day intervals). Mucosal immunization considerably altered the gut microbiome of mice by enriching the abundance of beneficial gut bacteria, such as Muribaculaceae, Mucispirillum, Ruminococcaceae, Alistipes, Roseburia, and Clostridia vadinBB60. Moreover, the predicted function of the gut microbiome showed increased metabolic pathways for amino acids, energy, carbohydrates, cofactors, and vitamins. The fecal concentration of short-chain fatty acids, especially butyrate, was also altered by mucosal immunization. Notably, alterations in gut microbiome composition, function, and butyrate levels were positively associated with the immune response to the vaccine. Our results suggest that the gut microbiome and its metabolites may have influenced the immunogenicity of the LAB-based SARS-CoV-2 vaccine.
Assuntos
COVID-19 , Microbioma Gastrointestinal , Feminino , Animais , Camundongos , Humanos , SARS-CoV-2 , Epitopos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Imunização , Bacteroidetes , Butiratos , Clostridiales , ImunidadeRESUMO
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
RESUMO
Both crude protein (CP) and probiotics can modulate the gut microbiome of the host, thus conferring beneficial effects. However, the benefits of low CP diet supplemented with multispecies probiotics on gut microbiome and its metabolites have not been investigated in pigs. Thus, we investigated the combinatory effects of low CP diet supplemented with multispecies probiotics on gut microbiome composition, function, and microbial metabolites in growing pigs. In total, 140 6 week-old piglets (Landrace × Yorkshire × Duroc) were used in this study. The pigs were divided into four groups with a 2 × 2 factorial design based on their diets: normal-level protein diet (16% CP; NP), low-level protein diet (14% CP; LP), NP with multispecies probiotics (NP-P), and LP with multispecies probiotics (LP-P). After the feeding trial, the fecal samples of the pigs were analyzed. The fecal scores were improved by the probiotic supplementation, especially in LP-P group. We also observed a probiotic-mediated alteration in the gut microbiome of pigs. In addition, LP-P group showed higher species richness and diversity compared with other groups. The addition of multispecies probiotics in low CP diet also enhanced gut microbiota metabolites production, such as short-chain fatty acids (SCFAs) and polyamines. Correlation analysis revealed that Oscillospiraceae UCG-002, Eubacterium coprostanoligenes, Lachnospiraceae NK4A136 group, and Muribaculaceae were positively associated with SCFAs; and Prevotella, Eubacterium ruminantium, Catenibacterium, Alloprevotella, Prevotellaceae NK3B31 group, Roseburia, Butyrivibrio, and Dialister were positively correlated with polyamines. Supplementation with multispecies probiotics modulated the function of the gut microbiome by upregulating the pathways for protein digestion and utilization, potentially contributing to enriched metabolite production in the gut. The results of this study demonstrate that supplementation with multispecies probiotics may complement the beneficial effects of low CP levels in pig feed. These findings may help formulate sustainable feeding strategies for swine production.
RESUMO
Introduction: To date, most mammography-related AI models have been trained using either film or digital mammogram datasets with little overlap. We investigated whether or not combining film and digital mammography during training will help or hinder modern models designed for use on digital mammograms. Methods: To this end, a total of six binary classifiers were trained for comparison. The first three classifiers were trained using images only from Emory Breast Imaging Dataset (EMBED) using ResNet50, ResNet101, and ResNet152 architectures. The next three classifiers were trained using images from EMBED, Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM), and Digital Database for Screening Mammography (DDSM) datasets. All six models were tested only on digital mammograms from EMBED. Results: The results showed that performance degradation to the customized ResNet models was statistically significant overall when EMBED dataset was augmented with CBIS-DDSM/DDSM. While the performance degradation was observed in all racial subgroups, some races are subject to more severe performance drop as compared to other races. Discussion: The degradation may potentially be due to ( 1) a mismatch in features between film-based and digital mammograms ( 2) a mismatch in pathologic and radiological information. In conclusion, use of both film and digital mammography during training may hinder modern models designed for breast cancer screening. Caution is required when combining film-based and digital mammograms or when utilizing pathologic and radiological information simultaneously.
RESUMO
Among various biological agents, bacteriocins are important candidates to control Listeria monocytogenes which is a foodborne pathogen. In this study, a novel bacteriocin, named agilicin C7, was isolated from Ligilactobacillus agilis C7 showing inhibitory activity against L. monocytogenes. Agilicin C7 biosynthesis gene was characterized by bioinformatics analyses and heterologously expressed in Escherichia coli for further study. The anti-listeria activity of recombinant agilicin C7 (r-agilicin C7) was lost by proteases and α-amylase, suggesting that agilicin C7 is a glycoprotein. r-Agilicin C7 has wide pH and thermal stability and is also stable in various organic solvents. It destroyed L. monocytogenes by damaging the integrity of the cell envelope. These properties of r-agilicin C7 indicate that agilicin C7 is a novel amylase-sensitive anti-listerial Class IId bacteriocin. Physicochemical stability and inhibitory activity against L. monocytogenes of r-agilicin C7 suggest that it can be applied to control L. monocytogenes in the food industry, including dairy and meat products.
RESUMO
We here report the whole genome sequence of Ligilactobacillus agilis C7 with anti-listerial activity, which was isolated from pig feces. The genome size of L. agilis C7 (~ 3.0 Mb) is relatively larger compared with other L. agilis strains. L. agilis C7 carries three bacteriocin gene clusters encoding garvicin Q, salivaricin A, and Blp family class II bacteriocin. Garvicin Q and salivaricin A are reported to be active against Listeria monocytogenes and Micrococcus luteus, respectively, as well as against other Gram-positive bacteria. Meanwhile, the bacteriocin encoded in the blp cassette was shown to be active against pneumococci, mediating intraspecies competition. This report highlights the potential of L. agilis C7 for the production of bacteriocins inhibiting pathogenic bacteria.