Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445726

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss and a critical complication of diabetes with a very complex etiology. The build-up of reactive oxygen species (ROS) due to hyperglycemia is recognized as a primary risk factor for DR. Although spermidine, a naturally occurring polyamine, has been reported to have antioxidant effects, its effectiveness in DR has not yet been examined. Therefore, in this study, we investigated whether spermidine could inhibit high glucose (HG)-promoted oxidative stress in human retinal pigment epithelial (RPE) cells. The results demonstrated that spermidine notably attenuated cytotoxicity and apoptosis in HG-treated RPE ARPE-19 cells, which was related to the inhibition of mitochondrial ROS production. Under HG conditions, interleukin (IL)-1ß and IL-18's release levels were markedly increased, coupled with nuclear factor kappa B (NF-κB) signaling activation. However, spermidine counteracted the HG-induced effects. Moreover, the expression of nucleotide-binding oligomerization domain-like receptor (NLR) protein 3 (NLRP3) inflammasome multiprotein complex molecules, including TXNIP, NLRP3, ASC, and caspase-1, increased in hyperglycemic ARPE-19 cells, but spermidine reversed these molecular changes. Collectively, our findings demonstrate that spermidine can protect RPE cells from HG-caused injury by reducing ROS and NF-κB/NLRP3 inflammasome pathway activation, indicating that spermidine could be a potential therapeutic compound for DR treatment.


Assuntos
Retinopatia Diabética , Inflamassomos , Humanos , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermidina/farmacologia , Estresse Oxidativo , Glucose/toxicidade , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
2.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203313

RESUMO

Lactobacilli have been widely used as probiotics because of their benefits for intestinal health and physiological functions. Among a variety of Lactobacillus genera, Limosilactobacillus reuteri has been studied for its ability to exert anti-inflammatory functions and its role in controlling metabolic disorders, as well as the production of the antimicrobial compound reuterin. However, the effects and mechanisms of L. reuteri on enhancing immune responses in the immunosuppressed states have been relatively understudied. In this study, we isolated an immunomodulatory strain, namely, L. reuteri KBL346 (KBL346), from a fecal sample of a 3-month-old infant in Korea. We evaluated the immunostimulatory activity and hematopoietic function of KBL346 in macrophages and cyclophosphamide (CPA)-induced immunosuppressed mice. KBL346 increased the phagocytic activity against Candida albicans MYA-4788 in macrophages, and as biomarkers for this, increased secretions of nitric oxide (NO) and prostaglandin E2 (PGE2) were confirmed. Also, the secretions of innate cytokines (TNF-α, IL-1ß, and IL-6) were increased. In CPA-induced immunosuppressed mice, KBL346 at a dosage of 1010 CFU/kg protected against spleen injury and suppressed levels of immune-associated parameters, including NK cell activity, T and B lymphocyte proliferation, CD4+ and CD8+ T cell abundance, cytokines, and immunoglobulins in vivo. The effects were comparable or superior to those in the Korean red ginseng positive control group. Furthermore, the safety assessment of KBL346 as a probiotic was conducted by evaluating its antibiotic resistance, hemolytic activity, cytotoxicity, and metabolic characteristics. This study demonstrated the efficacy and safety of KBL346, which could potentially be used as a supplement to enhance the immune system.


Assuntos
Limosilactobacillus reuteri , Humanos , Lactente , Animais , Camundongos , Hospedeiro Imunocomprometido , Lactobacillus , Ativação Linfocitária , Ciclofosfamida , Citocinas , Dinoprostona
3.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902068

RESUMO

Phloroglucinol is a class of polyphenolic compounds containing aromatic phenyl rings and is known to have various pharmacological activities. Recently, we reported that this compound isolated from Ecklonia cava, a brown alga belonging to the family Laminariaceae, has potent antioxidant activity in human dermal keratinocytes. In this study, we evaluated whether phloroglucinol could protect against hydrogen peroxide (H2O2)-induced oxidative damage in murine-derived C2C12 myoblasts. Our results revealed that phloroglucinol suppressed H2O2-induced cytotoxicity and DNA damage while blocking the production of reactive oxygen species. We also found that phloroglucinol protected cells from the induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, phloroglucinol enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) as well as the expression and activity of heme oxygenase-1 (HO-1). However, such anti-apoptotic and cytoprotective effects of phloroglucinol were greatly abolished by the HO-1 inhibitor, suggesting that phloroglucinol could increase the Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress. Taken together, our results indicate that phloroglucinol has a strong antioxidant activity as an Nrf2 activator and may have therapeutic benefits for oxidative-stress-mediated muscle disease.


Assuntos
Antioxidantes , Estresse Oxidativo , Phaeophyceae , Floroglucinol , Animais , Humanos , Camundongos , Antioxidantes/farmacologia , Apoptose , Linhagem Celular , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Mioblastos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Phaeophyceae/metabolismo , Floroglucinol/farmacologia , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008928

RESUMO

Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters. Several studies have suggested that GABA supplements can reduce blood pressure and modulate the renal immune system in vitro and in vivo. In the present study, we investigated the effect of GABA-enriched salt as an alternative to traditional salt on aggravated renal injury by high salt intake in cisplatin-induced nephrotoxicity mice. High salt intake accelerated the increase of biomarkers, such as blood urea nitrogen and serum creatinine levels for renal injury in cisplatin-induced nephrotoxicity mice. However, oral administration of GABA-contained salt notably suppressed serum BUN and creatinine levels. The efficacy of GABA salt was superior to lacto GABA salt and postbiotics GABA salt. Furthermore, GABA-enriched salt markedly restored histological symptoms of nephrotoxicity including renal hypertrophy, tubular dilation, hemorrhage, and collagen deposition aggravated by salt over-loading in cisplatin-exposed mice. Among them, GABA salt showed a higher protective effect against cisplatin-induced renal histological changes than lacto GABA salt and postbiotics GABA salt. In addition, administration of high salt significantly enhanced expression levels of apoptosis and inflammatory mediators in cisplatin-induced nephrotoxicity mice, while GABA-enriched salt greatly down-regulated the expression of these mediators. Taken together, these results demonstrate the protective effect of GABA against damage caused by high salt intake in cisplatin-induced renal toxicity. Its mechanism may be due to the suppression of hematological and biochemical toxicity, apoptosis, and inflammation. In conclusion, although the protective efficacy of GABA salt on renal injury is different depending on the sterilization and filtration process after fermentation with L. brevis BJ20 and L. plantarum BJ21, our findings suggest that GABA-enriched salt has a beneficial effect against immoderate high salt intake-mediated kidney injury in patients with cisplatin-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino/toxicidade , Cloreto de Sódio na Dieta/efeitos adversos , Ácido gama-Aminobutírico/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/fisiopatologia , Animais , Apoptose , Inflamação , Rim , Masculino , Camundongos , Substâncias Protetoras/farmacologia
5.
Cutan Ocul Toxicol ; 41(4): 273-284, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36097682

RESUMO

PURPOSE: Numerous studies have linked particulate matter2.5 (PM2.5) to ocular surface diseases, but few studies have been conducted on the biological effect of PM2.5 on the cornea. The objective of this study was to evaluate the harmful effect of PM2.5 on primary rat corneal epithelial cells (RCECs) in vitro and identify the toxic mechanism involved. MATERIALS AND METHODS: Primary cultured RCECs were characterized by pan-cytokeratin (CK) staining. In PM2.5-exposed RCECs, cell viability, microarray gene expression, inflammatory cytokine levels, mitochondrial damage, DNA double-strand break, and signalling pathway were investigated. RESULTS: Exposure to PM2.5 induced cytotoxicity and morphological changes in RCECs. In addition, PM2.5 markedly up-regulated pro-inflammatory mediators but down-regulated the wound healing-related transforming growth factor-ß. Furthermore, PM2.5 promoted mitochondrial reactive oxygen species (ROS) production and mediated cellular damage to mitochondria and DNA, whereas these cellular alterations induced by PM2.5 were markedly suppressed by a potential ROS scavenger. Noteworthy, removal of ROS selectively down-regulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of the nuclear factor-κB (NF-κB) p65 in PM2.5-stimulated cells. Additionally, SB203580, a p38 MAPK inhibitor, markedly suppressed these PM2.5-mediated cellular dysfunctions. CONCLUSIONS: Taken together, our findings show that PM2.5 can promote the ROS/p38 MAPK/NF-κB signalling pathway and lead to mitochondrial damage and DNA double-strand break, which is ultimately caused inflammation and cytotoxicity in RCECs. These findings indicate that the ROS/p38 MAPK/NF-κB signalling pathway is one mechanism involved in PM2.5-induced ocular surface disorders.


Assuntos
Material Particulado , Proteínas Quinases p38 Ativadas por Mitógeno , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Material Particulado/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Células Epiteliais , Inflamação/induzido quimicamente
6.
Arch Biochem Biophys ; 697: 108688, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227289

RESUMO

Coptisine is isoquinoline alkaloid derived from Coptidis Rhizoma and is known to have potential anti-cancer activity toward various carcinomas. Targeting autophagy is one of the main approaches for cancer therapy, but whether the anti-cancer efficacy of coptisine involves autophagy is still unclear. Therefore, this study investigated the effect of coptisine on autophagy in hepatocellular carcinoma (HCC) Hep3B cells, and identified the underlying mechanism. Our results showed that coptisine increased cytotoxicity and autophagic vacuoles in a concentration-dependent manner. Furthermore, the expressions of light chain 3 (LC3)-I/II, Beclin-1 and autophagy genes were markedly increased by coptisine, while the expression of p62 decreased. In addition, we found that pretreatment with bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, markedly reduced coptisine-mediated autophagic cell death, but 3-methyladenine, an inhibitor for autophagosome formation did not. Moreover, our results showed that although coptisine up-regulated AMP-activated protein kinase (AMPK) that partially induced LC3-I/II, coptisine-mediated AMPK signaling did not directly regulate autophagic cell death. Additionally, we found that coptisine suppressed the phosphorylation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), and this effect was notably enhanced by PI3K inhibitor LY294002. Meanwhile, coptisine significantly increased both the production of mitochondrial reactive oxygen species (ROS) and the recruitment of mitophagy-regulated proteins to mitochondria. Furthermore, N-acetylcysteine, a potential ROS scavenger, substantially suppressed the expression of mitophagy-regulated proteins and LC3 puncta by coptisine. Overall, our results demonstrate that coptisine-mediated autophagic cell death was regulated by PI3K/Akt/mTOR signaling and mitochondrial ROS production associated with mitochondrial dysfunction. Taken together, these findings suggest that coptisine exerts its anti-cancer effects through induction of autophagy in HCC Hep3B cells.


Assuntos
Autofagia/efeitos dos fármacos , Berberina/análogos & derivados , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Berberina/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072916

RESUMO

Chronic inflammation, which is promoted by the production and secretion of inflammatory mediators and cytokines in activated macrophages, is responsible for the development of many diseases. Auranofin is a Food and Drug Administration-approved gold-based compound for the treatment of rheumatoid arthritis, and evidence suggests that auranofin could be a potential therapeutic agent for inflammation. In this study, to demonstrate the inhibitory effect of auranofin on chronic inflammation, a saturated fatty acid, palmitic acid (PA), and a low concentration of lipopolysaccharide (LPS) were used to activate RAW264.7 macrophages. The results show that PA amplified LPS signals to produce nitric oxide (NO) and various cytokines. However, auranofin significantly inhibited the levels of NO, monocyte chemoattractant protein-1, and pro-inflammatory cytokines, such as interleukin (IL)-1ß, tumor necrosis factor-α, and IL-6, which had been increased by co-treatment with PA and LPS. Moreover, the expression of inducible NO synthase, IL-1ß, and IL-6 mRNA and protein levels increased by PA and LPS were reduced by auranofin. In particular, the upregulation of NADPH oxidase (NOX) 4 and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) induced by PA and LPS were suppressed by auranofin. The binding between the toll-like receptor (TLR) 4 and auranofin was also predicted, and the release of NO and cytokines was reduced more by simultaneous treatment with auranofin and TLR4 inhibitor than by auranofin alone. In conclusion, all these findings suggested that auranofin had anti-inflammatory effects in PA and LPS-induced macrophages by interacting with TLR4 and downregulating the NOX4-mediated NF-κB signaling pathway.


Assuntos
Auranofina/farmacologia , Inflamação/tratamento farmacológico , NADPH Oxidase 4/genética , Receptor 4 Toll-Like/genética , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/genética , Ácido Palmítico/toxicidade , Células RAW 264.7
8.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946527

RESUMO

Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Coptis/química , Coptis chinensis , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Rizoma/química , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572992

RESUMO

Retinal pigment epithelial (RPE) cells occupy the outer layer of the retina and perform various biological functions. Oxidative damage to RPE cells is a major risk factor for retinal degeneration that ultimately leads to vision loss. In this study, we investigated the role of spermidine in a hydrogen peroxide (H2O2)-induced oxidative stress model using human RPE cells. Our findings showed that 300 µM H2O2 increased cytotoxicity, apoptosis, and cell cycle arrest in the G2/M phase, whereas these effects were markedly suppressed by 10 µM spermidine. Furthermore, spermidine significantly reduced H2O2-induced mitochondrial dysfunction including mitochondrial membrane potential and mitochondrial activity. Although spermidine displays antioxidant properties, the generation of intracellular reactive oxygen species (ROS) upon H2O2 insult was not regulated by spermidine. Spermidine did suppress the increase in cytosolic Ca2+ levels resulting from endoplasmic reticulum stress in H2O2-stimulated human RPE cells. Treatment with a cytosolic Ca2+ chelator markedly reversed H2O2-induced cellular dysfunction. Overall, spermidine protected against H2O2-induced cellular damage by blocking the increase of intracellular Ca2+ independently of ROS. These results suggest that spermidine protects RPE cells from oxidative stress, which could be a useful treatment for retinal diseases.


Assuntos
Apoptose , Cálcio/metabolismo , Estresse Oxidativo , Epitélio Pigmentado da Retina/citologia , Espermidina/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Espermidina/farmacologia
10.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806566

RESUMO

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular , Movimento Celular , Triterpenos Pentacíclicos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose , Caspase 3/genética , Proliferação de Células , Humanos , Técnicas In Vitro , Metástase Neoplásica , Espécies Reativas de Oxigênio , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ácido Betulínico
11.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752099

RESUMO

Hepatocellular carcinoma (HCC) has a high mortality rate worldwide, and treatment is very limited due to its high recurrence and low diagnosis rate, and therefore there is an increasing need to develop more effective drugs to treat HCC. Coptisine is one of the isoquinoline alkaloids, and it has various pharmacological effects. However, the evidence for the molecular mechanism of the anticancer efficacy is still insufficient. Therefore, this study investigated the antiproliferative effect of coptisine on human HCC Hep3B cells and identified the action mechanism. Our results showed that coptisine markedly increased DNA damage and apoptotic cell death, which was associated with induction of death receptor proteins. Coptisine also significantly upregulated expression of proapoptotic Bax protein, downregulated expression of anti-apoptotic Bcl-2 protein, and activated caspase-3, -8, and -9. In addition, coptisine remarkably increased the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and release of cytochrome c into the cytoplasm. However, N-acetylcysteine (NAC), a ROS scavenger, significantly attenuated the apoptosis-inducing effect of coptisine. It is worth noting that coptisine significantly upregulated phosphorylation of ROS-dependent c-Jun N-terminal kinase (JNK), whereas treatment with JNK inhibitor could suppress an apoptosis-related series event. Taken together, our results suggest that coptisine has an anticancer effect in Hep3B cells through ROS-mediated activation of the JNK signaling pathway.


Assuntos
Berberina/análogos & derivados , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Apoptose/efeitos dos fármacos , Berberina/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Caspase 3/genética , Linhagem Celular Tumoral , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismo
12.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977643

RESUMO

Bone growth during childhood and puberty determines an adult's final stature. Although several prior studies have reported that fermented oyster (FO) consisting of a high amount of gamma aminobutyric acid can be attributed to bone health, there is no research on the efficacy of FO on growth regulation and the proximal tibial growth plate. Therefore, in this study, we investigated the effect of FO oral administration on hepatic and serum growth regulator levels and the development of the proximal tibial growth plate in young Sprague-Dawley rats. Both oral administration of FO (FO 100, 100 mg/kg FO and FO 200, 200 mg/kg FO) and subcutaneous injection of recombinant human growth hormone (rhGH, 200 µg/kg of rhGH) for two weeks showed no toxicity. Circulating levels of growth hormone (GH) significantly increased in the FO 200 group. The expression and secretion of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) were enhanced by FO administration. FO administration promoted the expression of bone morphogenic proteins IGF-1 and IGFBP-3 in the proximal tibial growth plate. This positive effect of FO resulted in incremental growth of the entire plate length by expanding the proliferating and hypertrophic zones in the proximal tibial growth plate. Collectively, our results suggested that oral administration of FO is beneficial for bone health, which may ultimately result in increased height.


Assuntos
Crassostrea/química , Fermentação , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/crescimento & desenvolvimento , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento , Ácido gama-Aminobutírico/química , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Crassostrea/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/sangue , Lâmina de Crescimento/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
13.
Phytother Res ; 33(12): 3228-3241, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486124

RESUMO

The peel of Citrus unshiu Marcow. fruits (CU) has long been used as a traditional medicine that has therapeutic effects against pathogenic diseases, including asthma, vomiting, dyspepsia, blood circulation disorders, and various types of cancer. In this study, we investigated the effect of CU peel on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells, and in B16F10 cells inoculated-C57BL/6 mice. Our results show that ethanol extracts of CU (EECU) inhibited cell growth and increased the apoptotic cells in B16F10 cells. EECU also stimulated the induction of mitochondria-mediated intrinsic pathway, with reduced mitochondrial membrane potential and increased generation of intracellular reactive oxygen species. Furthermore, EECU suppressed the migration, invasion, and colony formation of B16F10 cells. In addition, the oral administration of EECU reduced serum lactate dehydrogenase activity without weight loss, hepatotoxicity, nor nephrotoxicity in B16F10 cell-inoculated mice. Moreover, EECU markedly suppressed lung hypertrophy, the number and expression of metastatic tumor nodules, and the expression of inflammatory tumor necrosis factor-alpha in lung tissue. In conclusion, our findings suggest that the inhibitory effect of EECU on the metastasis of melanoma indicates that it may be regarded as a potential therapeutic herbal drug for melanoma.


Assuntos
Citrus/química , Frutas/química , Melanoma Experimental/dietoterapia , Metástase Neoplásica/tratamento farmacológico , Animais , Apoptose , Camundongos , Camundongos Endogâmicos C57BL
14.
J Microbiol Biotechnol ; 34(3): 596-605, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044685

RESUMO

Anthocyanins belong to phenolic pigments and are known to have various pharmacological activities. This study aimed to investigate whether anthocyanins could inhibit hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial ARPE-19 cells. Our results indicated that anthocyanins suppressed H2O2-induced genotoxicity, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione. Anthocyanins also suppressed H2O2-induced apoptosis by reversing the Bcl-2/Bax ratio and inhibiting caspase-3 activation. Additionally, anthocyanins attenuated the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Moreover, anthocyanins increased the expression of heme oxygenase-1 (HO-1) as well as its activity, which was correlated with the phosphorylation and nuclear translocation of nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the cytoprotective and anti-apoptotic effects of anthocyanins were significantly attenuated by the HO-1 inhibitor, demonstrating that anthocyanins promoted Nrf2-induced HO-1 activity to prevent ARPE-19 cells from oxidative stress. Therefore, our findings suggest that anthocyanins, as Nrf2 activators, have potent ROS scavenging activity and may have the potential to protect ocular injury caused by oxidative stress.


Assuntos
Antocianinas , Peróxido de Hidrogênio , Humanos , Antocianinas/farmacologia , Antocianinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Heme Oxigenase-1/metabolismo , Transdução de Sinais , Linhagem Celular , Estresse Oxidativo , Apoptose , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia
15.
Integr Med Res ; 13(2): 101038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38716164

RESUMO

Background: Tagetes erecta Linn, popularly known as Marigold, has various pharmacological effects. It is used as a dietary supplement, especially for the posterior segment of the eye. However, the effect of T. erecta Linn on ocular disorders is still unknown. The purpose of this study was to investigate the effect of oral administration of ethanol extract of T. erecta Linn flower (TE) for dry eye syndrome (DED) in a murine model. Methods: Twenty-four mice were subjected to desiccation stress (DS) to induce DED and subcutaneous injection of scopolamine hydrobromide was administered 4 times a day for 21 days. TE and cyclosporine A (CsA) were administered for an additional 14 days under DS conditions. Mice were randomly divided into four groups: control, TE200, TE400, and CsA. Changes in tear production and corneal fluorescein staining were measured at baseline, after 7 days of DS, and after treatment for 7 and 14 days. Results: DS significantly decreased tear production and increased corneal fluorescein score; the parameters were significantly reversed in the TE400 (oral administration of 400 mg TE/kg body weight) group. TE markedly improved DS-induced changes including corneal epithelial detachment and lacrimal gland inflammation. The anti-inflammatory effect of TE 400 supplementation was similar to that of CsA. Conclusions: Our findings suggest that oral administration of TE may protect against DS-induced DED via stabilization of the tear film and suppression of inflammation. This study provides an experimental basis for further studies on the potential clinical use of TE in preventing DED.

16.
Biomol Ther (Seoul) ; 32(3): 329-340, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586992

RESUMO

Mangiferin is a kind of natural xanthone glycosides and is known to have various pharmacological activities. However, since the beneficial efficacy of this compound has not been reported in retinal pigment epithelial (RPE) cells, this study aimed to evaluate whether mangiferin could protect human RPE ARPE-19 cells from oxidative injury mimicked by hydrogen peroxide (H2O2). The results showed that mangiferin attenuated H2O2-induced cell viability reduction and DNA damage, while inhibiting reactive oxygen species (ROS) production and preserving diminished glutathione (GSH). Mangiferin also antagonized H2O2-induced inhibition of the expression and activity of antioxidant enzymes such as manganese superoxide dismutase and GSH peroxidase, which was associated with inhibition of mitochondrial ROS production. In addition, mangiferin protected ARPE-19 cells from H2O2-induced apoptosis by increasing the Bcl-2/Bax ratio, decreasing caspase-3 activation, and blocking poly(ADP-ribose) polymerase cleavage. Moreover, mangiferin suppressed the release of cytochrome c into the cytosol, which was achieved by interfering with mitochondrial membrane disruption. Furthermore, mangiferin increased the expression and activity of heme oxygenase-1 (HO-1) and nuclear factor-erythroid-2 related factor 2 (Nrf2). However, the inhibition of ROS production, cytoprotective and anti-apoptotic effects of mangiferin were significantly attenuated by the HO-1 inhibitor, indicating that mangiferin promoted Nrf2-mediated HO-1 activity to prevent ARPE-19 cells from oxidative injury. The results of this study suggest that mangiferin, as an Nrf2 activator, has potent ROS scavenging activity and may have the potential to protect oxidative stress-mediated ocular diseases.

17.
Biomol Ther (Seoul) ; 32(3): 349-360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602043

RESUMO

Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

18.
Nutr Res Pract ; 17(1): 32-47, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36777802

RESUMO

BACKGROUND/OBJECTIVES: Benign prostatic hyperplasia (BPH) characterized by an enlarged prostate gland is common in elderly men. Corni Fructus (CF) and Schisandrae Fructus (SF) are known to have various pharmacological effects, including antioxidant and anti-inflammatory activities. In this study, we evaluated the inhibitory efficacy of CF, SF, and their mixture (MIX) on the development of BPH using an in vivo model of testosterone-induced BPH. MATERIALS/METHODS: Six-week-old male Sprague-Dawley rats were randomly divided into seven groups. To induce BPH, testosterone propionate (TP) was injected to rats except for those in the control group. Finasteride, saw palmetto (SP), CF, SF, and MIX were orally administered along with TP injection. At the end of treatment, histological changes in the prostate and the level of various biomarkers related to BPH were evaluated. RESULTS: Our results showed that BPH induced by TP led to prostate weight and histological changes. Treatment with MIX effectively improved TP-induced BPH by reducing prostate index, lumen area, epithelial thickness, and expression of BPH biomarkers such as 5α-reductase type 2, prostate-specific antigen, androgen receptor, and proliferating cell nuclear antigen compared to treatment with CF or SF alone. Moreover, MIX further reduced levels of elevated serum testosterone, dihydrotestosterone, and prostate-specific antigen in BPH compared to the SP, a positive control. BPH was also improved more by MIX than by CF or SF alone. CONCLUSIONS: Based on the results, MIX is a potential natural therapeutic candidate for BPH by regulating 5α-reductase and AR signaling pathway.

19.
Phytomedicine ; 112: 154705, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36796188

RESUMO

BACKGROUND: Monosodium urate (MSU) crystals are associated with gouty inflammatory diseases. MSU-associated inflammation is majorly triggered by NOD-like receptor protein 3 (NLRP3) inflammasome that promotes interleukin (IL)-1ß secretion. Although diallyl trisulfide (DATS) is well-known polysulfide garlic compounds with anti-inflammatory effects, its action in MSU-induced inflammasome activation has not been known yet. PURPOSE: The objective of the current study was to investigate anti-inflammasome effects and mechanisms of DATS in RAW 264.7 and bone marrow-derived macrophages (BMDM). METHODS: The concentrations of IL-1ß were analyzed with enzyme-linked immunosorbent assay. The MSU-induced mitochondrial damage and reactive oxygen species (ROS) production were detected by fluorescence microscope and flow cytometry. The protein expressions of NLRP3 signaling molecules, NADPH oxidase (NOX) 3/4 were assessed with Western blotting. RESULTS: DATS suppressed MSU-induced IL-1ß and caspase-1 accompanied by decreased inflammasome complex formation in RAW 264.7 and BMDM. In addition, DATS restored mitochondrial damage. DATS downregulated NOX 3/4 that were upregulated by MSU as predicted by gene microarray and confirmed by Western blotting. CONCLUSION: This study first reports mechanistic finding that DATS alleviates MSU-induced NLRP3 inflammasome by mediating NOX3/4-dependent mitochondrial ROS production in macrophages in vitro and ex vivo, suggesting DATS could be effective therapeutic candidate for gouty inflammatory condition.


Assuntos
Gota , Inflamassomos , Humanos , Ácido Úrico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Gota/tratamento farmacológico , Macrófagos , Inflamação/tratamento farmacológico , Estresse Oxidativo , Interleucina-1beta/metabolismo
20.
Antioxidants (Basel) ; 12(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37507949

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss and a major complication of diabetes. Hyperglycemia-induced accumulation of reactive oxygen species (ROS) is an important risk factor for DR. ß-asarone, a major component of volatile oil extracted from Acori graminei Rhizoma, exerts antioxidant effects; however, its efficacy in DR remains unknown. In this study, we investigated whether ß-asarone inhibits high-glucose (HG)-induced oxidative damage in human retinal pigment epithelial (RPE) ARPE-19 cells. We found that ß-asarone significantly alleviated cytotoxicity, apoptosis, and DNA damage in HG-treated ARPE-19 cells via scavenging of ROS generation. ß-Asarone also significantly attenuated the excessive accumulation of lactate dehydrogenase and mitochondrial ROS by increasing the manganese superoxide dismutase and glutathione activities. HG conditions markedly increased the release of interleukin (IL)-1ß and IL-18 and upregulated their protein expression and activation of the nuclear factor-kappa B (NF-κB) signaling pathway, whereas ß-asarone reversed these effects. Moreover, expression levels of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome multiprotein complex molecules, including thioredoxin-interacting protein, NLRP3, apoptosis-associated speck-like protein containing a caspase-recruitment domain, and cysteinyl aspartate-specific proteinase-1, were increased in ARPE-19 cells under HG conditions. However, their expression levels remained similar to those in the control group in the presence of ß-asarone. Therefore, ß-asarone protects RPE cells from HG-induced injury by blocking ROS generation and NF-κB/NLRP3 inflammasome activation, indicating its potential as a therapeutic agent for DR treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa