Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
J Neurosci Res ; 102(4): e25323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553948

RESUMO

Previously, we reported that prenatal exposure to high corticosterone induced attention-deficit hyperactivity disorder (ADHD)-like behaviors with cognitive deficits after weaning. In the present study, cellular mechanisms underlying cortisol-induced cognitive dysfunction were investigated using rat pups (Corti.Pups) born from rat mothers that were repetitively injected with corticosterone during pregnancy. In results, Corti.Pups exhibited the failure of behavioral memory formation in the Morris water maze (MWM) test and the incomplete long-term potentiation (LTP) of hippocampal CA1 neurons. Additionally, glutamatergic excitatory postsynaptic currents (EPSCs) were remarkably suppressed in Corti.Pups compared to normal rat pups. Incomplete LTP and weaker EPSCs in Corti.Pups were attributed to the delayed postsynaptic development of CA1 neurons, showing a higher expression of NR2B subunits and lower expression of PSD-95 and BDNF. These results indicated that the prenatal treatment with corticosterone to elevate cortisol level might potently downregulate the BDNF-mediated signaling critical for the synaptic development of hippocampal CA1 neurons during brain development, and subsequently, induce learning and memory impairment. Our findings suggest a possibility that the prenatal dysregulation of cortisol triggers the epigenetic pathogenesis of neurodevelopmental psychiatric disorders, such as ADHD and autism.


Assuntos
Corticosterona , Hidrocortisona , Humanos , Gravidez , Feminino , Ratos , Animais , Corticosterona/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração , Neurônios/metabolismo , Transtornos da Memória/metabolismo
2.
Biotechnol Bioeng ; 121(3): 1144-1162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184812

RESUMO

During the COVID-19 pandemic, expedient vaccine production has been slowed by the shortage of safe and effective raw materials, such as adjuvants, essential components to enhance the efficacy of vaccines. Monophosphoryl lipid A (MPLA) is a potent and safe adjuvant used in human vaccines, including the Shingles vaccine, Shingrix. 3-O-desacyl-4'-monophosphoryl lipid A (MPL), a representative MPLA adjuvant commercialized by GSK, was prepared via chemical conversion of precursors isolated from Salmonella typhimurium R595. However, the high price of these materials limits their use in premium vaccines. To combat the scarcity and high cost of safe raw materials for vaccines, we need to develop a feasible MPLA production method that is easily scaled up to meet industrial requirements. In this study, we engineered peptidoglycan and outer membrane biosynthetic pathways in Escherichia coli and developed a Escherichia coli strain, KHSC0055, that constitutively produces EcML (E. coli-produced monophosphoryl lipid A) without additives such as antibiotics or overexpression inducers. EcML production was optimized on an industrial scale via high-density fed-batch fermentation, and obtained 2.7 g of EcML (about 135,000 doses of vaccine) from a 30-L-scale fermentation. Using KHSC0055, we simplified the production process and decreased the production costs of MPLA. Then, we applied EcML purified from KHSC0055 as an adjuvant for a COVID-19 vaccine candidate (EuCorVac-19) currently in clinical trial stage III in the Philippines. By probing the efficacy and safety of EcML in humans, we established KHSC0055 as an efficient cell factory for MPLA adjuvant production.


Assuntos
Adjuvantes de Vacinas , Lipídeo A/análogos & derivados , Vacinas , Humanos , Escherichia coli/genética , Vacinas contra COVID-19 , Pandemias , Adjuvantes Imunológicos
3.
Anal Bioanal Chem ; 416(20): 4481-4490, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38926227

RESUMO

Flow cytometry plays a pivotal role in biotechnology by providing quantitative measurements for a wide range of applications. Nonetheless, achieving precise particle quantification, particularly without relying on counting beads, remains a challenge. In this study, we introduce a novel exhaustive counting method featuring a sample loop-based injection system that delivers a defined sample volume to a detection system to enhance quantification in flow cytometry. We systematically assess the performance characteristics of this system with micron-sized polystyrene beads, addressing issues related to sample introduction, adsorption, and volume measurement. Results underscore the excellent analytical performance of the proposed method, characterized by high linearity and repeatability. We compare our approach to counting bead-based measurements, and while an approximate bias value was observed, the measured values were found to be similar between the methods, demonstrating its comparability and reliability. This method holds great promise for improving the accuracy and precision of particle quantification in flow cytometry, with implications for various fields including healthcare and environmental monitoring.


Assuntos
Citometria de Fluxo , Tamanho da Partícula , Poliestirenos , Citometria de Fluxo/métodos , Poliestirenos/química , Reprodutibilidade dos Testes , Microesferas
4.
Brain ; 146(9): 3608-3615, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143322

RESUMO

The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFß4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFß4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFß4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFß4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/metabolismo , Células de Schwann , Fenótipo , Fator de Crescimento Transformador beta/metabolismo
5.
Bioorg Chem ; 150: 107603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968905

RESUMO

Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.


Assuntos
Ácidos Cafeicos , Osteoclastos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Estrutura Molecular , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Osteoporose/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
6.
Cell Mol Life Sci ; 80(1): 34, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622429

RESUMO

The myelin sheath is an essential structure for the rapid transmission of electrical impulses through axons, and peripheral myelination is a well-programmed postnatal process of Schwann cells (SCs), the myelin-forming peripheral glia. SCs transdifferentiate into demyelinating SCs (DSCs) to remove the myelin sheath during Wallerian degeneration after axonal injury and demyelinating neuropathies, and macrophages are responsible for the degradation of myelin under both conditions. In this study, the mechanism by which DSCs acquire the ability of myelin exocytosis was investigated. Using serial ultrastructural evaluation, we found that autophagy-related gene 7-dependent formation of a "secretory phagophore (SP)" and tubular phagophore was necessary for exocytosis of large myelin chambers by DSCs. DSCs seemed to utilize myelin membranes for SP formation and employed p62/sequestosome-1 (p62) as an autophagy receptor for myelin excretion. In addition, the acquisition of the myelin exocytosis ability of DSCs was associated with the decrease in canonical autolysosomal flux and was demonstrated by p62 secretion. Finally, this SC demyelination mechanism appeared to also function in inflammatory demyelinating neuropathies. Our findings show a novel autophagy-mediated myelin clearance mechanism by DSCs in response to nerve damage.


Assuntos
Doenças Desmielinizantes , Células de Schwann , Humanos , Células de Schwann/metabolismo , Bainha de Mielina/metabolismo , Axônios/metabolismo , Autofagia , Doenças Desmielinizantes/metabolismo
7.
BMC Pediatr ; 24(1): 149, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424493

RESUMO

BACKGROUND: Measuring arterial partial pressure of carbon dioxide (PaCO2) is crucial for proper mechanical ventilation, but the current sampling method is invasive. End-tidal carbon dioxide (EtCO2) has been used as a surrogate, which can be measured non-invasively, but its limited accuracy is due to ventilation-perfusion mismatch. This study aimed to develop a non-invasive PaCO2 estimation model using machine learning. METHODS: This retrospective observational study included pediatric patients (< 18 years) admitted to the pediatric intensive care unit of a tertiary children's hospital and received mechanical ventilation between January 2021 and June 2022. Clinical information, including mechanical ventilation parameters and laboratory test results, was used for machine learning. Linear regression, multilayer perceptron, and extreme gradient boosting were implemented. The dataset was divided into 7:3 ratios for training and testing. Model performance was assessed using the R2 value. RESULTS: We analyzed total 2,427 measurements from 32 patients. The median (interquartile range) age was 16 (12-19.5) months, and 74.1% were female. The PaCO2 and EtCO2 were 63 (50-83) mmHg and 43 (35-54) mmHg, respectively. A significant discrepancy of 19 (12-31) mmHg existed between EtCO2 and the measured PaCO2. The R2 coefficient of determination for the developed models was 0.799 for the linear regression model, 0.851 for the multilayer perceptron model, and 0.877 for the extreme gradient boosting model. The correlations with PaCO2 were higher in all three models compared to EtCO2. CONCLUSIONS: We developed machine learning models to non-invasively estimate PaCO2 in pediatric patients receiving mechanical ventilation, demonstrating acceptable performance. Further research is needed to improve reliability and external validation.


Assuntos
Dióxido de Carbono , Respiração Artificial , Feminino , Humanos , Lactente , Masculino , Capnografia/métodos , Pressão Parcial , Reprodutibilidade dos Testes
8.
Ecotoxicol Environ Saf ; 270: 115856, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134637

RESUMO

Air pollutants, such as particulate matter (PM) and diesel exhaust particles (DEP), are associated with respiratory diseases. Therefore, preventive and therapeutic strategies against PM-and DEP (PM10D)-induced respiratory diseases are needed. Herein, we evaluate the protective effects of a mixture of Lactiplantibacillus plantarum KC3 and Leonurus Japonicas Houtt (LJH) extract against airway inflammation associated with exposure to PM10D. To determine the anti-inflammatory effects of the LJH extract, reactive oxygen species (ROS) production and the expression of inflammatory pathways were determined in PM10-induced MH-S cells. For the respiratory protective effects, BALB/c mice were exposed to PM10D via intranasal injection, and a mixture of L. plantarum KC3 and LJH extract was administered orally for 12 days. LJH extract inhibited ROS production and the phosphorylation of downstream factors of NF-κB in PM10-stimulated MH-S cells. The mixture of L. plantarum KC3 and LJH repressed the infiltration of neutrophils, reduced the immune cells number, and suppressed the proinflammatory mediators and cyclooxygenase (COX)-2 expressions in PM10D-induced airway inflammation with reduced phosphorylation of downstream factors of NF-κB. In addition, these effects were not observed in an alveolar macrophage depleted PM10D-induced mouse model using clodronate liposomes. The extract mixture also regulated gut microbiota in feces and upregulated the mRNA expression of Foxp3, transforming growth factor (TGF)-ß1, and interleukin (IL)-10 in the colon. The L. plantarum KC3 and LJH extract mixture may inhibit alveolar macrophage- and neutrophil-mediated inflammatory responses and regulate gut microbiota and immune response in PM10D-induced airway inflammation, suggesting it is a potential remedy to prevent and cure airway inflammation and respiratory disorders.


Assuntos
Leonurus , Doenças Respiratórias , Camundongos , Animais , Leonurus/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos , Material Particulado , Inflamação
9.
J Sci Food Agric ; 104(12): 7603-7616, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38804737

RESUMO

BACKGROUND: Protein hydrolysates (PHs) can enhance plant nitrogen nutrition and improve the quality of vegetables, depending on their bioactive compounds. A tomato greenhouse experiment was conducted under both optimal (14 mM) and suboptimal (2 mM) nitrogen (N-NO3) conditions. Tomatoes were treated with a new Malvaceae-derived PH (MDPH) and its molecular fractions (MDPH1, >10 kDa; MDPH2, 1-10 kDa and MDPH3, <1 kDa). RESULTS: Under optimal N conditions, the plants increased biomass and fruit yield, and showed a higher photosynthetic pigment content in leaves in comparison with suboptimal N, whereas under N-limiting conditions, an increase in dry matter, soluble solid content (SSC) and lycopene, a reduction in firmness, and changes in organic acid and phenolic compounds were observed. With 14 mM N-NO3, MDPH3 stimulated an increase in dry weight and increased yield components and lycopene in the fruit. The MDPH2 fraction also resulted in increased lycopene accumulation in fruit under 14 mM N-NO3. At a low N level, the PH fractions showed distinct effects compared with the whole MDPH and the control, with an increase in biomass for MDPH1 and MDPH2 and a higher pigment content for MDPH3. Regardless of N availability, all the fractions affected fruit quality by increasing SSC, whereas MDPH2 and MDPH3 modified organic acid content and showed a higher concentration of flavonols, lignans, and stilbenes. CONCLUSION: The molecular weight of the peptides modifies the effect of PHs on plant performance, with different behavior depending on the level of N fertilization, confirming the effectiveness of fractioning processes. © 2024 Society of Chemical Industry.


Assuntos
Fertilizantes , Frutas , Nitrogênio , Folhas de Planta , Proteínas de Plantas , Hidrolisados de Proteína , Solanum lycopersicum , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Nitrogênio/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Hidrolisados de Proteína/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Fertilizantes/análise , Licopeno/química , Licopeno/metabolismo , Licopeno/análise , Fotossíntese
10.
Antimicrob Agents Chemother ; 67(11): e0082223, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874294

RESUMO

Klebsiella pneumoniae bacteremia is known to present a virulent clinical course, including multiple metastatic infections, which is not uncommon in Asia. However, there are limited data on the incidence and risk factors for ocular involvement in K. pneumoniae bacteremia. We retrospectively reviewed the medical records of all patients with K. pneumoniae bacteremia who underwent ophthalmologic examination in a tertiary center in Seoul, Korea, from February 2012 to December 2020. Two retinal specialists reviewed the findings of the ophthalmologic examinations and classified them as endophthalmitis, chorioretinitis, and no ocular involvement. Of 689 patients, 56 [8.1%; 95% confidence interval (CI) 6.2-10.4] had ocular involvement, and 9 (1.3%; 95% CI 0.6-2.5) were diagnosed with endophthalmitis. Of 47 patients with chorioretinitis, 45 (95.7%) improved with systemic antibiotic therapy alone. Community-onset bacteremia (100% vs 62.1% vs 57.4%, P = 0.04), cryptogenic liver abscess (55.6% vs 11.8% vs 8.5%, P = 0.003), and metastatic infection (66.7% vs 5.8% vs 10.6%, P < 0.001) were more common in endophthalmitis than in no ocular involvement or chorioretinitis. In the multivariable analysis, cryptogenic liver abscess [adjusted odds ratio (aOR), 6.63; 95% CI 1.44-35.20] and metastatic infection (aOR, 17.52; 95% CI 3.69-96.93) were independent risk factors for endophthalmitis. Endophthalmitis was not associated with 30-day mortality. Endophthalmitis is rare in Asian patients with K. pneumoniae bacteremia. Targeted ophthalmologic examination in those with cryptogenic liver abscess, metastatic infection, or ocular symptoms may be more appropriate than routine examination of all patients.


Assuntos
Bacteriemia , Coriorretinite , Endoftalmite , Infecções por Klebsiella , Abscesso Hepático , Humanos , Klebsiella pneumoniae , Incidência , Estudos Retrospectivos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Antibacterianos/uso terapêutico , Abscesso Hepático/tratamento farmacológico , Endoftalmite/tratamento farmacológico , Endoftalmite/epidemiologia , Coriorretinite/complicações , Coriorretinite/tratamento farmacológico , Bacteriemia/epidemiologia , Fatores de Risco
11.
EMBO J ; 38(24): e101196, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31750563

RESUMO

Parkinson's disease (PD) is neurodegenerative movement disorder characterized by degeneration of midbrain-type dopamine (mDA) neurons in the substantia nigra (SN). The RNA-binding protein Lin28 plays a role in neuronal stem cell development and neuronal differentiation. In this study, we reveal that Lin28 conditional knockout (cKO) mice show degeneration of mDA neurons in the SN, as well as PD-related behavioral deficits. We identify a loss-of-function variant of LIN28A (R192G substitution) in two early-onset PD patients. Using an isogenic human embryonic stem cell (hESC)/human induced pluripotent stem cell (hiPSC)-based disease model, we find that the Lin28 R192G variant leads to developmental defects and PD-related phenotypes in mDA neuronal cells that can be rescued by expression of wild-type Lin28A. Cell transplantation experiments in PD model rats show that correction of the LIN28A variant in the donor patient (pt)-hiPSCs leads to improved behavioral phenotypes. Our data link LIN28A to PD pathogenesis and suggest future personalized medicine targeting this variant in patients.


Assuntos
Doença de Parkinson/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Substância Negra/metabolismo , Animais , Comportamento Animal , Transplante de Células , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Células-Tronco Embrionárias/fisiologia , Edição de Genes , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Knockout , Mutação , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Doença de Parkinson/genética , Ratos , Transplante de Células-Tronco
12.
Stem Cells ; 40(4): 385-396, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35262736

RESUMO

Lin28A is an RNA-binding protein that controls mammalian development and maintenance of the pluripotency of embryonic stem cells (ESCs) via regulating the processing of the microRNA let-7. Lin28A is highly expressed in ESCs, and ectopic expression of this protein facilitates reprogramming of somatic cells to induced pluripotent stem cells. However, the mechanisms underlying the post-translational regulation of Lin28A protein stability in ESCs remain unclear. In the present study, we identified Kap1 (KRAB-associated protein 1) as a novel Lin28A-binding protein using affinity purification and mass spectrometry. Kap1 specifically interacted with the N-terminal region of Lin28A through its coiled-coil domain. Kap1 overexpression significantly attenuated Lin28A ubiquitination and increased its stability. However, small interfering RNA-mediated knockdown of Kap1 promoted the ubiquitination of Lin28A, leading to its proteasomal degradation. Trim71, an E3 ubiquitin ligase, induced Lin28A degradation and Kap1 knockdown accelerated the Trim71-dependent degradation of Lin28A. Mutation of the lysine 177 residue of Lin28A to arginine abrogated the ubiquitination and degradation of Lin28A which were accelerated by Kap1 silencing. Moreover, Kap1 overexpression led to the accumulation of Lin28A in the cytoplasm, but not in the nucleus, and reduced the levels of let-7 subtypes. These results suggest that Kap1 plays a key role in regulation of the stability of Lin28A by modulating the Trim71-mediated ubiquitination and subsequent degradation of Lin28A, thus playing a pivotal role in the regulation of ESC self-renewal and pluripotency.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes Induzidas , Animais , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mamíferos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação
13.
Cell Commun Signal ; 21(1): 219, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612584

RESUMO

BACKGROUND: Megakaryocytes (MKs) are platelet precursors, which arise from hematopoietic stem cells (HSCs). While MK lineage commitment and differentiation are accompanied by changes in gene expression, many factors that modulate megakaryopoiesis remain to be uncovered. Replication initiation determinant protein (RepID) which has multiple histone-code reader including bromodomain, cryptic Tudor domain and WD40 domains and Cullin 4-RING E3 ubiquitin ligase complex (CRL4) recruited to chromatin mediated by RepID have potential roles in gene expression changes via epigenetic regulations. We aimed to investigate whether RepID-CRL4 participates in transcriptional changes required for MK differentiation. METHODS: The PCR array was performed using cDNAs derived from RepID-proficient or RepID-deficient K562 erythroleukemia cell lines. Correlation between RepID and DAB2 expression was examined in the Cancer Cell Line Encyclopedia (CCLE) through the CellMinerCDB portal. The acceleration of MK differentiation in RepID-deficient K562 cells was determined by estimating cell sizes as well as counting multinucleated cells known as MK phenotypes, and by qRT-PCR analysis to validate transcripts of MK markers using phorbol 12-myristate 13-acetate (PMA)-mediated MK differentiation condition. Interaction between CRL4 and histone methylation modifying enzymes were investigated using BioGRID database, immunoprecipitation and proximity ligation assay. Alterations of expression and chromatin binding affinities of RepID, CRL4 and histone methylation modifying enzymes were investigated using subcellular fractionation followed by immunoblotting. RepID-CRL4-JARID1A-based epigenetic changes on DAB2 promoter were analyzed by chromatin-immunoprecipitation and qPCR analysis. RESULTS: RepID-deficient K562 cells highly expressing MK markers showed accelerated MKs differentiation exhibiting increases in cell size, lobulated nuclei together with reaching maximum levels of MK marker expression earlier than RepID-proficient K562 cells. Recovery of WD40 domain-containing RepID constructs in RepID-deficient background repressed DAB2 expression. CRL4A formed complex with histone H3K4 demethylase JARID1A in soluble nucleus and loaded to the DAB2 promoter in a RepID-dependent manner during proliferation condition. RepID, CRL4A, and JARID1A were dissociated from the chromatin during MK differentiation, leading to euchromatinization of the DAB2 promoter. CONCLUSION: This study uncovered a role for the RepID-CRL4A-JARID1A pathway in the regulation of gene expression for MK differentiation, which can form the basis for the new therapeutic approaches to induce platelet production. Video Abstract.


Assuntos
Núcleo Celular , Histonas , Proteínas de Ciclo Celular , Diferenciação Celular , Cromatina , Domínio Tudor
14.
Protein Expr Purif ; 201: 106186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206960

RESUMO

Human fibroblast growth factor 19 (hFGF19) belongs to the endocrine FGF19 superfamily and is considered a potential agent to treat severe or relapsing nonalcoholic fatty liver disease. Numerous studies have confirmed the beneficial effects of this hormone on the related symptoms of the disease and attempts at producing recombinant proteins in various hosts are steadily proliferating. Recently, we reported that authentic hFGF19 can be solubly expressed through combining synonymous codon substitutions and co-expression with disulfide-bond isomerase (DsbC) in Escherichia coli. However, during purification, hFGF19 without the His-tag occasionally co-eluted with His-tagged DsbC when using metal affinity chromatography, thereby requiring auxiliary purification steps to achieve apparent homogeneity. This phenomenon provides evidence that hFGF19 specifically interacts with immobilized Ni2+, which can thus be used as an alternative tool for the purification of hFGF19. Consequently, we could simply and reproducibly purify hFGF19 from cell lysates by using Ni2+-immobilized metal affinity chromatography and stepwise gradient elution with imidazole.


Assuntos
Escherichia coli , Metais , Cromatografia de Afinidade/métodos , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hormônios/metabolismo , Humanos , Imidazóis/metabolismo , Isomerases , Metais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Oral Dis ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724481

RESUMO

OBJECTIVE: This study investigated the effects of Lactobacillus fermentum BELF11 on periodontitis in mice (LIP). METHODS: Sixty mice were randomly assigned to a control group (CTL), LIP/PBS group (LIP and PBS applied), or LIP/BELF11 group (LIP and L. fermentum BELF11 applied). For 14 days, PBS or L. fermentum BELF11 was applied twice daily to the mice in the LIP/PBS or LIP/BELF11 group, respectively. After 14 days, radiographic, histological, and pro-inflammatory cytokine assessments were conducted. RESULTS: The LIP/PBS and LIP/BELF11 groups demonstrated greater alveolar bone loss than the CTL group (p < 0.05). The LIP/BELF11 group showed significantly reduced alveolar bone loss on the mesial side compared to the LIP/PBS group. Histologically, the LIP/BELF11 group showed consistent patterns of connective tissue fiber arrangement, lower levels of inflammatory infiltration, less alveolar bone loss, and higher alveolar bone density than the LIP/PBS group, despite showing more signs of destruction than the CTL group. The LIP/BELF11 group also exhibited significantly lower levels of pro-inflammatory cytokines than the LIP/PBS group. CONCLUSIONS: L. fermentum BELF11 inhibits alveolar bone loss and periodontitis progression by regulating pro-inflammatory cytokine production. These findings suggest that L. fermentum BELF11 may be a potential adjunctive therapy in periodontal treatment.

16.
J Korean Med Sci ; 38(7): e52, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808547

RESUMO

BACKGROUND: A study on coronavirus disease 2019 (COVID-19) phobia among students revealed that fear of contracting COVID-19 was associated with commuting to school and spending time with others at school. Therefore, it is the need-of-the-hour for the Korean government to identify factors affecting COVID-19 phobia among university students and to consider these factors while framing the policy direction for the process of returning to normalcy in university education. Consequently, we aimed to identify the current state of COVID-19 phobia among Korean undergraduate and graduate students and the factors affecting COVID-19 phobia. METHODS: This cross-sectional survey was conducted to identify the factors affecting COVID-19 phobia among Korean undergraduate and graduate students. The survey collected 460 responses from April 5 to April 16, 2022. The questionnaire was developed based on the COVID-19 Phobia Scale (C19P-S). Multiple linear regression was performed on the C19P-S scores using five models with the following dependent variables: Model 1, total C19P-S score; Model 2, psychological subscale score; Model 3, psychosomatic subscale score; Model 4, social subscale score; and Model 5, economic subscale score. The fit of these five models was established, and a P-value of less than 0.05 (F test) was considered statistically significant. RESULTS: An analysis of the factors affecting the total C19P-S score led to the following findings: women significantly outscored men (difference: 4.826 points, P = 0.003); the group that favored the government's COVID-19 mitigation policy scored significantly lower than those who did not favor it (difference: 3.161 points, P = 0.037); the group that avoided crowded places scored significantly higher than the group that did not avoid crowded places (difference: 7.200 points, P < 0.001); and those living with family/friends scored significantly higher than those in other living situations (difference: 4.606 points, P = 0.021). Those in favor of the COVID-19 mitigation policy had significantly lower psychological fear than those who were against it (difference: -1.686 points, P = 0.004). Psychological fear was also significantly higher for those who avoided crowded places compared to those who did not difference: 2.641 points, P < 0.001). Fear was significantly higher in people cohabitating than those living alone (difference: 1.543 points, P = 0.043). CONCLUSION: The Korean government, in their pursuit of a policy that eases COVID-19-related restrictions, will also have to spare no efforts in providing correct information to prevent the escalation of COVID-19 phobia among people with a high fear of contracting the disease. This should be done through trustworthy information sources, such as the media, public agencies, and COVID-19 professionals.


Assuntos
COVID-19 , Transtornos Fóbicos , Masculino , Humanos , Feminino , Estudos Transversais , Transtornos Fóbicos/psicologia , Inquéritos e Questionários , República da Coreia
17.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569796

RESUMO

Microplastics (MPs) are recognized as environmental pollutants with potential implications for human health. Considering the rapid increase in obesity rates despite stable caloric intake, there is a growing concern about the link between obesity and exposure to environmental pollutants, including MPs. In this study, we conducted a comprehensive investigation utilizing in silico, in vitro, and in vivo approaches to explore the brain distribution and physiological effects of MPs. Molecular docking simulations were performed to assess the binding affinity of three plastic polymers (ethylene, propylene, and styrene) to immune cells (macrophages, CD4+, and CD8+ lymphocytes). The results revealed that styrene exhibited the highest binding affinity for macrophages. Furthermore, in vitro experiments employing fluorescence-labeled PS-MPs (fPS-MPs) of 1 µm at various concentrations demonstrated a dose-dependent binding of fPS-MPs to BV2 murine microglial cells. Subsequent oral administration of fPS-MPs to high-fat diet-induced obese mice led to the co-existence of fPS-MPs with immune cells in the blood, exacerbating impaired glucose metabolism and insulin resistance and promoting systemic inflammation. Additionally, fPS-MPs were detected throughout the brain, with increased activation of microglia in the hypothalamus. These findings suggest that PS-MPs significantly contribute to the exacerbation of systemic inflammation in high-fat diet-induced obesity by activating peripheral and central inflammatory immune cells.

18.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047234

RESUMO

NANOG, a stemness-associated transcription factor, is highly expressed in many cancers and plays a critical role in regulating tumorigenicity. Transformation/transcription domain-associated protein (TRRAP) has been reported to stimulate the tumorigenic potential of cancer cells and induce the gene transcription of NANOG. This study aimed to investigate the role of the TRRAP-NANOG signaling pathway in the tumorigenicity of cancer stem cells. We found that TRRAP overexpression specifically increases NANOG protein stability by interfering with NANOG ubiquitination mediated by FBXW8, an E3 ubiquitin ligase. Mapping of NANOG-binding sites using deletion mutants of TRRAP revealed that a domain of TRRAP (amino acids 1898-2400) is responsible for binding to NANOG and that the overexpression of this TRRAP domain abrogated the FBXW8-mediated ubiquitination of NANOG. TRRAP knockdown decreased the expression of CD44, a cancer stem cell marker, and increased the expression of P53, a tumor suppressor gene, in HCT-15 colon cancer cells. TRRAP depletion attenuated spheroid-forming ability and cisplatin resistance in HCT-15 cells, which could be rescued by NANOG overexpression. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model, which could be reversed by NANOG overexpression. Together, these results suggest that TRRAP plays a pivotal role in the regulation of the tumorigenic potential of colon cancer cells by modulating NANOG protein stability.


Assuntos
Neoplasias do Colo , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estabilidade Proteica
19.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569446

RESUMO

This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.

20.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138478

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease in which neuroinflammation and oxidative stress interact to contribute to pathogenesis. This study investigates the in vivo neuroprotective effects of a patented yeast extract lysate in a lipopolysaccharide (LPS)-induced neuroinflammation model. The yeast extract lysate, named aldehyde-reducing composition (ARC), exhibited potent antioxidant and anti-aldehyde activities in vitro. Oral administration of ARC at 10 or 20 units/kg/day for 3 days prior to intraperitoneal injection of LPS (10 mg/kg) effectively preserved dopaminergic neurons in the substantia nigra (SN) and striatum by preventing LPS-induced cell death. ARC also normalized the activation of microglia and astrocytes in the SN, providing further evidence for its neuroprotective properties. In the liver, ARC downregulated the LPS-induced increase in inflammatory cytokines and reversed the LPS-induced decrease in antioxidant-related genes. These findings indicate that ARC exerts potent antioxidant, anti-aldehyde, and anti-inflammatory effects in vivo, suggesting its potential as a disease-modifying agent for the prevention and treatment of neuroinflammation-related diseases, including Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Lipopolissacarídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Doenças Neuroinflamatórias , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Doenças Neurodegenerativas/metabolismo , Microglia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa