Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(20): 206001, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829090

RESUMO

Low temperature phase separation in mixtures of ^{3}He and ^{4}He isotopes is a unique property of quantum fluids. Hydrogen has long been considered as another potential quantum liquid and has been predicted to be superfluid at T≤1 K, well below freezing temperature of ≈14 K. Phase separation has also been predicted in mixtures of para-H_{2} and D_{2} at temperatures ≤3 K. To defer the freezing, we produced clusters containing para-H_{2} and D_{2} at an estimated temperature of ≈2 K whose state was studied by vibrational Raman spectroscopy. The results indicate that the clusters are liquid and show the phase separation of the isotopes. The phase separation is further corroborated by the quantum molecular dynamics simulation.

2.
Phys Chem Chem Phys ; 25(4): 3232-3239, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625370

RESUMO

H2 and D2 molecules condensed in a carbon nano tube (CNT) and their nonequilibrium flow through nano pores offer a key test to reveal mass molecular transport and separation of purely isotopic molecules that possess the same electronic potential but a two-times difference in mass inducing differently enhanced nuclear quantum effects (NQEs) such as nuclear delocalization and zero-point energy. Taking advantage of the non-empirical quantum molecular dynamics method developed for condensed H2-D2 molecules that can describe various kinds of condensed phases and thermodynamic states including uneven density and a shear flow, we investigated condensed isotopic H2-D2 mixtures flowing inside nanoscale adsorbable CNTs. We found that, in any mixture, the more delocalized H2 molecules are more supercooled than the less delocalized D2 molecules in a two-dimensional liquid film adsorbed around the CNT well, and that the stronger supercooling of the H2 molecules than the D2 molecules in an equilibrium state becomes more enhanced under the nonequilibrium flow due to the isotope-dependent flow-induced condensation, demonstrating the anomalous condensed-phase quantum sieving under the nonequilibrium flow and its dependence on the mixing ratio and temperature. The differently enhanced NQEs of the purely isotopic molecules essentially influence the condensed adsorption and their flows occurring in the nanoscale CNT, which should be distinguished from a dilute gas adsorption. The predicted properties and obtained physical insights in this paper will help in experimentally controlling condensed H2-D2 mixtures, and open a new strategy and innovative design of nanoporous materials for adsorptive separation of condensed-phase mixtures under a nonequilibrium flow not of a dilute gas mixture in an equilibrium state.

3.
Angew Chem Int Ed Engl ; 62(52): e202316792, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37955415

RESUMO

Soft porous coordination polymers (PCPs) have the remarkable ability to recognize similar molecules as a result of their structural dynamics. However, their guest-induced gate-opening behaviors often lead to issues with selectivity and separation efficiency, as co-adsorption is nearly unavoidable. Herein, we report a strategy of a confined-rotational shutter, in which the rotation of pyridyl rings within the confined nanospace of a halogen-bonded coordination framework (NTU-88) creates a maximum aperture of 4.4 Å, which is very close to the molecular size of propyne (C3 H4 : 4.4 Å), but smaller than that of propylene (C3 H6 : 5.4 Å). This has been evidenced by crystallographic analyses and modelling calculations. The NTU-88o (open phase of activated NTU-88) demonstrates dedicated C3 H4 adsorption, and thereby leads to a sieving separation of C3 H4 /C3 H6 under ambient conditions. The integrated nature of high uptake ratio, considerable capacity, scalable synthesis, and good stability make NTU-88 a promising candidate for the feasible removal of C3 H4 from C3 H4 /C3 H6 mixtures. In principle, this strategy holds high potential for extension to soft families, making it a powerful tool for optimizing materials that can tackle challenging separations with no co-adsorption, while retaining the crucial aspect of high capacity.

4.
J Am Chem Soc ; 143(5): 2239-2249, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33430582

RESUMO

This paper reports on durable and nearly temperature-independent (at 298-328 K) T-type photochromism of colloidal Cu-doped ZnS nanocrystals (NCs). The color of Cu-doped ZnS NC powder changes from pale yellow to dark gray by UV light irradiation, and the color changes back to pale yellow on a time scale of several tens of seconds to minutes after stopping the light irradiation, while the decoloration reaction is accelerated to submillisecond in solutions. This decoloration reaction is much faster than those of conventional inorganic photochromic materials. The origin of the reversible photoinduced coloration is revealed to be a strong optical transition involving a delocalized surface hole which survives over a minute after escaping from intraparticle carrier recombination due to electron-hopping dissociation. ZnS NCs can be easily prepared in a water-mediated one-pot synthesis and are less toxic. Therefore, they are promising for large-scale photochromic applications such as windows and building materials in addition to conventional photochromic applications. Moreover, the present study demonstrates the importance of excited carrier dynamics and trap depths, resulting in coloration over minutes not only for photochromic nanomaterials but also for various advanced photofunctional materials, such as long persistent luminescent materials and photocatalytic nanomaterials.

5.
J Am Chem Soc ; 143(42): 17388-17394, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34647732

RESUMO

The conversion of a high-energy photon into two excitons using singlet fission (SF) has stimulated a variety of studies in fields from fundamental physics to device applications. However, efficient SF has only been achieved in limited systems, such as solid crystals and covalent dimers. Here, we established a novel system by assembling 4-(6,13-bis(2-(triisopropylsilyl)ethynyl)pentacen-2-yl)benzoic acid (Pc) chromophores on nanosized CdTe quantum dots (QDs). A near-unity SF (198 ± 5.7%) initiated by interfacial resonant energy transfer from CdTe to surface Pc was obtained. The unique arrangement of Pc determined by the surface atomic configuration of QDs is the key factor realizing unity SF. The triplet-triplet annihilation was remarkably suppressed due to the rapid dissociation of triplet pairs, leading to long-lived free triplets. In addition, the low light-harvesting ability of Pc in the visible region was promoted by the efficient energy transfer (99 ± 5.8%) from the QDs to Pc. The synergistically enhanced light-harvesting ability, high triplet yield, and long-lived triplet lifetime of the SF system on nanointerfaces could pave the way for an unmatched advantage of SF.

6.
Phys Chem Chem Phys ; 23(38): 22110-22118, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34580684

RESUMO

Understanding how a supercritical fluid is related to normal liquid and gas and separating it into liquid-like and gas-like regions are of fundamental and practical importance. Despite the usefulness of hydrogen storage, molecular dynamics images on supercritical hydrogens exhibiting strong nuclear quantum effects are scarce. Taking advantage of the non-empirical ab initio molecular dynamics method for hydrogen molecules, we found that, while radial distribution functions and diffusion show a monotonic change along the density, van Hove time correlation functions and intramolecular properties such as bond length and vibrational frequency exhibit the anomalous order crossing the Widom line. By demonstrating that the anomalous order stemmed from the largest deviations between liquid-like and gas-like solvations formed around the Widom line, we concluded that this supercritical fluid is a mixture of liquid and gas possessing heterogeneity. The obtained physical insights can be an index to monitor the supercriticality and to identify distinct liquid-like and gas-like supercritical fluids.

7.
J Am Chem Soc ; 139(33): 11576-11583, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28747050

RESUMO

The prevalence of the condensed phase, interpenetration, and fragility of mesoporous coordination polymers (meso-PCPs) featuring dense open metal sites (OMSs) place strict limitations on their preparation, as revealed by experimental and theoretical reticular chemistry investigations. Herein, we propose a rational design of stabilized high-porosity meso-PCPs, employing a low-symmetry ligand in combination with the shortest linker, formic acid. The resulting dimeric clusters (PCP-31 and PCP-32) exhibit high surface areas, ultrahigh porosities, and high OMS densities (3.76 and 3.29 mmol g-1, respectively), enabling highly selective and effective separation of C2H2 from C2H2/CO2 mixtures at 298 K, as verified by binding energy (BE) and electrostatic potentials (ESP) calculations.

8.
Phys Chem Chem Phys ; 18(4): 2314-8, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26750610

RESUMO

Supercooled hydrogen liquid as well as superfluid have continued to elude experimental observation due to rapid crystallization. We computationally realized and investigated supercooled hydrogen liquid by a recently developed non-empirical real-time molecular dynamics method, which describes non-spherical hydrogen molecules with the nuclear quantum effects. We demonstrated that the hydrogen supercooled liquid is not a simply cooled liquid but rather exhibits intrinsic structural and dynamical characters including a precursor of tunneling and superfluidity which neither normal hydrogen liquid nor solid possesses. All of the insights provide a milestone for planning experiments of metastable hydrogen systems like glassy and superfluid states and for identifying various unknown hydrogen phases.

9.
Nano Lett ; 15(7): 4343-7, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26091186

RESUMO

Semiconductor quantum dot (QD) superlattices, which are periodically ordered three-dimensional (3D) array structures of QDs, are expected to exhibit novel photo-optical properties arising from the resonant interactions between adjacent QDs. Since the resonant interactions such as long-range dipole-dipole Coulomb coupling and short-range quantum resonance strongly depend on inter-QD nano space, precise control of the nano space is essential for physical understanding of the superlattice, which includes both of nano and bulk scales. Here, we study the pure quantum resonance in the 3D CdTe QD superlattice deposited by a layer-by-layer assembly of positively charged polyelectrolytes and negatively charged CdTe QDs. From XRD measurements, existence of the periodical ordering of QDs both in the lamination and in-plane directions, that is, the formation of the 3D periodic QD superlattice, was confirmed. The lowest excitation energy decreases exponentially with decreasing the nano space between the CdTe QD layers and also with decreasing the QD size, which is apparently indicative of the quantum resonance between the QDs rather than a dipole-dipole Coulomb coupling. The quantum resonance was also computationally demonstrated and rationalized by the orbital delocalization to neighboring CdTe QDs in the superlattice.

10.
J Chem Phys ; 143(17): 171102, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26547150

RESUMO

Nuclear quantum effects play a dominant role in determining the phase diagram of H2. With a recently developed quantum molecular dynamics simulation method, we examine dynamical and structural characters of solid H2 under vapor pressure, demonstrating the difference from liquid and high-pressure solid H2. While stable hexagonal close-packed lattice structures are reproduced with reasonable lattice phonon frequencies, the most stable adjacent configuration exhibits a zigzag structure, in contrast with the T-shape liquid configuration. The periodic angular distributions of H2 molecules indicate that molecules are not a completely free rotor in the vapor-pressure solid reflecting asymmetric potentials from surrounding molecules on adjacent lattice sites. Discrete jumps of librational and H-H vibrational frequencies as well as H-H bond length caused by structural rearrangements under vapor pressure effectively discriminate the liquid and solid phases. The obtained dynamical and structural information of the vapor-pressure H2 solid will be useful in monitoring thermodynamic states of condensed hydrogens.

11.
Nano Lett ; 14(3): 1263-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24359156

RESUMO

Although quantum confined nanomaterials, such as quantum dots (QDs) have emerged as a new class of light harvesting and charge separation materials for solar energy conversion, theoretical models for describing photoinduced charge transfer from these materials remain unclear. In this paper, we show that the rate of photoinduced electron transfer from QDs (CdS, CdSe, and CdTe) to molecular acceptors (anthraquinone, methylviologen, and methylene blue) increases at decreasing QD size (and increasing driving force), showing a lack of Marcus inverted regime behavior over an apparent driving force range of ∼0-1.3 V. We account for this unusual driving force dependence by proposing an Auger-assisted electron transfer model in which the transfer of the electron can be coupled to the excitation of the hole, circumventing the unfavorable Franck-Condon overlap in the Marcus inverted regime. This model is supported by computational studies of electron transfer and trapping processes in model QD-acceptor complexes.

12.
Acc Chem Res ; 46(6): 1280-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23459543

RESUMO

Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron-phonon energy relaxation. Multiple excitons are generated through impact ionization within picoseconds. The basis of exciton multiplication in quantum dots is the collective result of photoexcitation, dephasing, and nonadiabatic evolution. Each process is characterized by a distinct time-scale, and the overall multiple exciton generation dynamics is complete by about 10 ps. Without relying on semiempirical parameters, we computed quantum mechanical probabilities of multiple excitons for small model systems. Because exciton correlations and coherences are microscopic, quantum properties, results for small model systems can be extrapolated to larger, realistic quantum dots.

13.
J Chem Phys ; 140(17): 171101, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811617

RESUMO

Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

14.
ACS Nano ; 17(12): 11309-11317, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37159862

RESUMO

Organic-inorganic nanohybrids using semiconductor nanocrystals (NCs) coordinated with aromatic organic molecules have been widely studied in the fields of optoelectronic materials, such as solar cells, photocatalysis, and photon upconversion. In these materials, coordination bonds of ligand molecules are usually assumed to be stable during optical processes. However, this assumption is not always valid. In this study, we demonstrate that the coordination bonds between ligand molecules and NCs by carboxyl groups are displaced quasi-reversibly by light irradiation using zinc sulfide (ZnS) NCs coordinated with perylenebisimide (PBI) as a model system. Time-resolved spectroscopy over a wide range of time from tens-of femtosecond to second timescales and density functional theory calculations show that the photoinduced ligand displacement is driven by ultrafast hole transfer from PBI to ZnS NCs and that the dissociated radical anion of PBI survives over the second timescale. Photoinduced ligand displacements are important to be considered in various organic-inorganic nanohybrids and offer a possibility of NCs covered by nonphotoresponsive organic ligands for advanced photofunctional materials.

15.
Sci Adv ; 9(27): eade6958, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418532

RESUMO

Cancer cell-derived extracellular vesicles (EVs) have unique protein profiles, making them promising targets as disease biomarkers. High-grade serous ovarian carcinoma (HGSOC) is the deadly subtype of epithelial ovarian cancer, and we aimed to identify HGSOC-specific membrane proteins. Small EVs (sEVs) and medium/large EVs (m/lEVs) from cell lines or patient serum and ascites were analyzed by LC-MS/MS, revealing that both EV subtypes had unique proteomic characteristics. Multivalidation steps identified FRα, Claudin-3, and TACSTD2 as HGSOC-specific sEV proteins, but m/lEV-associated candidates were not identified. In addition, for using a simple-to-use microfluidic device for EV isolation, polyketone-coated nanowires (pNWs) were developed, which efficiently purify sEVs from biofluids. Multiplexed array assays of sEVs isolated by pNW showed specific detectability in cancer patients and predicted clinical status. In summary, the HGSOC-specific marker detection by pNW are a promising platform as clinical biomarkers, and these insights provide detailed proteomic aspects of diverse EVs in HGSOC patients.


Assuntos
Vesículas Extracelulares , Nanofios , Neoplasias Ovarianas , Feminino , Humanos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Vesículas Extracelulares/metabolismo , Biomarcadores , Proteínas , Neoplasias Ovarianas/metabolismo
16.
Nano Lett ; 11(4): 1845-50, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21452839

RESUMO

We developed time-domain ab initio simulation of Auger phenomena, including multiple exciton generation (MEG) and recombination (MER). It is the first approach describing phonon-assisted processes and early dynamics. MEG starts below the electronic threshold, strongly accelerating with energy. Ligands are particularly important to phonon-assisted MEG, which therefore can be probed with infrared spectroscopy. Short-time gaussian component gives 5-10% of MEG, justifying rate theories that assume exponential dynamics. MER is preceded by electron-phonon relaxation to low energies.


Assuntos
Modelos Teóricos , Pontos Quânticos , Semicondutores , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
17.
Commun Chem ; 5(1): 168, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697851

RESUMO

Apparent presence of the nuclear-spin species of a hydrogen molecule, para-hydrogen and ortho-hydrogen, associated with the quantum rotation is a manifestation of the nuclear quantum nature of hydrogen, governing not only molecular structures but also physical and chemical properties of hydrogen molecules. It has been a great challenge to observe and calculate real-time dynamics of such molecularized fermions. Here, we developed the non-empirical quantum molecular dynamics method that enables real-time molecular dynamics simulations of hydrogen molecules satisfying the nuclear spin statistics of the quantum rotor. While reproducing the species-dependent quantum rotational energy, population ratio, specific heat, and H-H bond length and frequency, we found that their translational, orientational and vibrational dynamics becomes accelerated with the higher rotational excitation, concluding that the nuclear quantum rotation stemmed from the nuclear spin statistics can induce various kinds of dynamics and reactions intrinsic to each hydrogen species.

18.
J Phys Chem Lett ; 13(16): 3579-3585, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35426681

RESUMO

A non-equilibrium molecular flow through a carbon nanotube (CNT) serves as a key system for revealing molecular transport and establishing nanofluidics. It has been challenging to simulate a non-equilibrium flow of hydrogen molecules exhibiting strong nuclear quantumness. Taking advantage of the quantum molecular dynamics method that can calculate real-time trajectories of hydrogen molecules even under a non-equilibrium flow, we found that the non-equilibrium flow makes hydrogen molecules more condensed and accelerates their adsorption near a CNT surface, letting the molecules flow more smoothly by propagating velocity momenta more efficiently along the CNT axis and by suppressing transverse molecular dynamics on the CNT cross section. Such flow-induced autonomic ordering indicates the importance of monitoring and investigating dynamics and adsorption of hydrogen molecules under a non-equilibrium circumstance as well as in a quiet equilibrium state, opening a new strategy for efficient hydrogen liquefaction and storage.

19.
Sci Adv ; 8(24): eabm5379, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714182

RESUMO

The success and continued expansion of research on metal-oxo clusters owe largely to their structural richness and wide range of functions. However, while most of them known to date are negatively charged polyoxometalates, there is only a handful of cationic ones, much less functional ones. Here, we show an all-inorganic hydroxyiodide [H10.7Sb32.1O44][H2.1Sb2.1I8O6][Sb0.76I6]2·25H2O (HSbOI), forming a face-centered cubic structure with cationic Sb32O44 clusters and two types of anionic clusters in its interstitial spaces. Although it is submicrometer in size, electron diffraction tomography of HSbOI allowed the construction of the initial structural model, followed by powder Rietveld refinement to reach the final structure. The cationic cluster is characterized by the presence of acidic protons on its surface due to substantial Sb3+ deficiencies, which enables HSbOI to serve as an excellent solid acid catalyst. These results open up a frontier for the exploration and functionalization of cationic metal-oxo clusters containing heavy main group elements.

20.
J Chem Phys ; 132(16): 164507, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20441288

RESUMO

Quantum effects such as zero-point energy and delocalization of wave packets (WPs) representing water hydrogen atoms are essential to understand anomalous energetics and dynamics in water. Since quantum calculations of many-body dynamics are highly complicated, no one has yet directly viewed the quantum WP dynamics of hydrogen atoms in liquid water. Our semiquantum molecular dynamics simulation made it possible to observe the hydrogen WP dynamics in liquid water. We demonstrate that the microscopic WP dynamics are closely correlated with and actually play key roles in the dynamical rearrangement in the hydrogen-bond network (HBN) of bulk water. We found the quantum effects of hydrogen atoms on liquid water dynamics such as the rearrangement of HBN and the concomitant fluctuation and relaxation. Our results provide new physical insights on HBN dynamics in water whose significance is not limited to pure liquid dynamics but also a greater understanding of chemical and biological reactions in liquid water.


Assuntos
Hidrogênio/química , Teoria Quântica , Água/química , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa