Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO Rep ; 24(10): e54540, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37589175

RESUMO

Mitochondrial replacement technology (MRT) aims to reduce the risk of serious disease in children born to women who carry pathogenic mitochondrial DNA (mtDNA) variants. By transplanting nuclear genomes from eggs of an affected woman to enucleated eggs from an unaffected donor, MRT creates new combinations of nuclear and mtDNA. Based on sets of shared sequence variants, mtDNA is classified into ~30 haplogroups. Haplogroup matching between egg donors and women undergoing MRT has been proposed as a means of reducing mtDNA sequence divergence between them. Here we investigate the potential effect of mtDNA haplogroup matching on clinical delivery of MRT and on mtDNA sequence divergence between donor/recipient pairs. Our findings indicate that haplogroup matching would limit the availability of egg donors such that women belonging to rare haplogroups may have to wait > 4 years for treatment. Moreover, we find that intra-haplogroup sequence variation is frequently within the range observed between randomly matched mtDNA pairs. We conclude that haplogroup matching would restrict the availability of MRT, without necessarily reducing mtDNA sequence divergence between donor/recipient pairs.


Assuntos
DNA Mitocondrial , Mitocôndrias , Criança , Humanos , Feminino , Estudos de Viabilidade , Haplótipos , Mitocôndrias/genética , DNA Mitocondrial/genética
2.
Reprod Biomed Online ; 45(6): 1097-1104, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207253

RESUMO

RESEARCH QUESTION: What temperature fluctuations are oocytes exposed to during oocyte retrieval? Can an alternative method of oocyte retrieval be designed to minimize these fluctuations? DESIGN: Mock oocyte retrieval procedures were performed to investigate the change in temperature when the follicular fluid is drained into collection tubes and when the fluid is subsequently poured into dishes to allow identification of the cumulus-oocyte complex (COC). A new device, the Eggcell, has been designed that addresses the problem of these temperature fluctuations. To confirm its safety and demonstrate the clinical applicability of Eggcell, laboratory validation was performed prior to use with human participants (n = 15). RESULTS: Eggcell meets its design specification to provide temperature stability within the physiological range for aspirated follicular fluid. The COC can be successfully retained within the chamber (n = 180) without evidence of loss or damage to the oocytes or compromise of fertilization rate, blastocyst development or clinical outcome. CONCLUSIONS: This study has demonstrated the successful first stages of development of a new medical device. Further studies are needed for comparative evaluation of clinical outcome with standard technology.


Assuntos
Fertilização in vitro , Recuperação de Oócitos , Feminino , Humanos , Fertilização in vitro/métodos , Folículo Ovariano/fisiologia , Blastocisto , Temperatura , Oócitos/fisiologia
3.
Nature ; 534(7607): 383-6, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281217

RESUMO

Mitochondrial DNA (mtDNA) mutations are maternally inherited and are associated with a broad range of debilitating and fatal diseases. Reproductive technologies designed to uncouple the inheritance of mtDNA from nuclear DNA may enable affected women to have a genetically related child with a greatly reduced risk of mtDNA disease. Here we report the first preclinical studies on pronuclear transplantation (PNT). Surprisingly, techniques used in proof-of-concept studies involving abnormally fertilized human zygotes were not well tolerated by normally fertilized zygotes. We have therefore developed an alternative approach based on transplanting pronuclei shortly after completion of meiosis rather than shortly before the first mitotic division. This promotes efficient development to the blastocyst stage with no detectable effect on aneuploidy or gene expression. After optimization, mtDNA carryover was reduced to <2% in the majority (79%) of PNT blastocysts. The importance of reducing carryover to the lowest possible levels is highlighted by a progressive increase in heteroplasmy in a stem cell line derived from a PNT blastocyst with 4% mtDNA carryover. We conclude that PNT has the potential to reduce the risk of mtDNA disease, but it may not guarantee prevention.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Terapia de Substituição Mitocondrial/métodos , Técnicas de Transferência Nuclear , Adulto , Blastocisto/citologia , Blastocisto/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , DNA Mitocondrial/análise , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Meiose , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Pesquisa Translacional Biomédica , Adulto Jovem , Zigoto/citologia , Zigoto/metabolismo
5.
Stem Cells ; 33(3): 639-45, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25377180

RESUMO

While the fertilized egg inherits its nuclear DNA from both parents, the mitochondrial DNA is strictly maternally inherited. Cells contain multiple copies of mtDNA, each of which encodes 37 genes, which are essential for energy production by oxidative phosphorylation. Mutations can be present in all, or only in some copies of mtDNA. If present above a certain threshold, pathogenic mtDNA mutations can cause a range of debilitating and fatal diseases. Here, we provide an update of currently available options and new techniques under development to reduce the risk of transmitting mtDNA disease from mother to child. Preimplantation genetic diagnosis (PGD), a commonly used technique to detect mutations in nuclear DNA, is currently being offered to determine the mutation load of embryos produced by women who carry mtDNA mutations. The available evidence indicates that cells removed from an eight-cell embryo are predictive of the mutation load in the entire embryo, indicating that PGD provides an effective risk reduction strategy for women who produce embryos with low mutation loads. For those who do not, research is now focused on meiotic nuclear transplantation techniques to uncouple the inheritance of nuclear and mtDNA. These approaches include transplantation of any one of the products or female meiosis (meiosis II spindle, or either of the polar bodies) between oocytes, or the transplantation of pronuclei between fertilized eggs. In all cases, the transferred genetic material arises from a normal meiosis and should therefore, not be confused with cloning. The scientific progress and associated regulatory issues are discussed.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/prevenção & controle , Terapia de Substituição Mitocondrial/métodos , Técnicas de Reprodução Assistida , Feminino , Humanos , Doenças Mitocondriais/genética , Gravidez
6.
Hum Reprod ; 25(9): 2387-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20634187

RESUMO

BACKGROUND: It has long been appreciated that environmental cues may trigger adaptive responses. Many of these responses are a result of changes in the epigenetic landscape influencing transcriptional states and consequently altering phenotypes. In the context of human reproductive health, the procedures necessary for assisted reproduction may result in altered phenotypes by primarily influencing DNA methylation. Among the well-documented effects of assisted reproduction technologies (ART), imprinted genes appear to be frequently altered, likely owing to their reliance on DNA methylation to impose parent-specific monoallelic expression. However, the generality of the potential deregulation of DNA methylation in ART-derived human embryos has not been evaluated. METHODS: In this study, we evaluate the genome-wide DNA methylation together with chromatin organisation in human embryos derived by either IVF (n = 89) or ICSI (n = 76). DNA methylation was assessed using an antibody against 5-methyl-cytidine, and chromatin organisation by DNA staining. RESULTS: Irrespective of the ART procedure, similar errors were observed in both groups and abnormal chromatin was positively correlated (P < 0.001) with inappropriate DNA methylation. Development up to the blastocyst stage was consistent with normal DNA methylation and chromatin organisation, reinforcing the importance of epigenetic regulation to form the early lineages of the blastocyst. Most importantly, we found no evidence that ICSI blastocysts were more severely affected than those derived by IVF. CONCLUSIONS: We conclude that ICSI does not lead to an increased incidence of epigenetic errors (DNA methylation and chromatin) compared with IVF.


Assuntos
Metilação de DNA , Embrião de Mamíferos/química , Epigênese Genética , Fertilização in vitro/efeitos adversos , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Biomarcadores , Blastocisto/química , Blastocisto/patologia , Montagem e Desmontagem da Cromatina , Aberrações Cromossômicas/embriologia , Aberrações Cromossômicas/estatística & dados numéricos , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Feminino , Humanos
7.
Stem Cells ; 25(12): 3045-57, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17872502

RESUMO

Human embryonic stem cells (hESC) promise tremendous potential as a developmental and cell therapeutic tool. The combined effort of stimulatory and inhibitory signals regulating gene expression, which drives the tissue differentiation and morphogenetic processes during early embryogenesis, is still very poorly understood. With the scarcity of availability of human embryos for research, hESC can be used as an alternative source to study the early human embryogenesis. Hyaluronan (HA), a simple hydrating sugar, is present abundantly in the female reproductive tract during fertilization, embryo growth, and implantation and plays an important role in early development of the mammalian embryo. HA and its binding protein RHAMM regulate various cellular and hydrodynamic processes from cell migration, proliferation, and signaling to regulation of gene expression, cell differentiation, morphogenesis, and metastasis via both extracellular and intracellular pathways. In this study, we show for the first time that HA synthase gene HAS2 and its binding receptor RHAMM are differentially expressed during all stages of preimplantation human embryos and hESC. RHAMM expression is significantly downregulated during differentiation of hESC, in contrast to HAS2, which is significantly upregulated. Most importantly, RHAMM knockdown results in downregulation of several pluripotency markers in hESC, induction of early extraembryonic lineages, loss of cell viability, and changes in hESC cycle. These data therefore highlight an important role for RHAMM in maintenance of hESC pluripotency, viability, and cell cycle control. Interestingly, HAS2 knockdown results in suppression of hESC differentiation without affecting hESC pluripotency. This suggests an intrinsic role for HAS2 in hESC differentiation process. In accordance with this, addition of exogenous HA to the differentiation medium enhances hESC differentiation to mesodermal and cardiac lineages. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/fisiologia , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glucuronosiltransferase/genética , Receptores de Hialuronatos/genética , Ácido Hialurônico/fisiologia , Blastocisto/citologia , Blastocisto/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas da Matriz Extracelular/fisiologia , Glucuronosiltransferase/fisiologia , Humanos , Receptores de Hialuronatos/fisiologia , Hialuronan Sintases , Ácido Hialurônico/biossíntese , Ácido Hialurônico/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia
8.
Methods Mol Biol ; 1818: 31-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29961252

RESUMO

The method described is for early pronuclear transfer (PNT) in normally fertilized human eggs. The PNT procedure should be performed shortly after the appearance of the two pronuclei. Each pronucleus is pinched off with a minimal amount of surrounding cytoplasm to form a membrane enclosed karyoplast. The karyoplasts are then fused with a fertilized egg which has had its pronuclei removed. An experienced individual will achieve approximately 90% survival of the fertilized eggs manipulated.


Assuntos
Núcleo Celular , Técnicas de Transferência Nuclear , Oócitos/citologia , Diferenciação Celular , Células Cultivadas , Citoplasma , Feminino , Humanos , Oócitos/fisiologia , Zigoto/citologia , Zigoto/fisiologia
9.
Expert Rev Mol Med ; 7(19): 1-21, 2005 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16171533

RESUMO

Embryonic stem cells (ESCs) are derived from the inner cell mass of the preimplantation stage embryo and are capable of prolonged symmetrical self-renewal (both daughter cells remain escs) as well as differentiation into derivatives of all three embryonic germ layers. ESCs therefore have the potential to provide an unlimited supply of transplantable cells to replace or regenerate damaged or diseased tissues. However, several barriers must be overcome before successful clinical trials are possible: for example, pure populations of the desired cell type need to be selected and expanded in clinically relevant numbers, and a method for preventing immunological rejection of the transplanted cells without long-term immunosuppressive therapy is also required. In this review, we highlight recent developments in human ESC derivation and expansion, outline current understanding of the signalling pathways underlying stem cell renewal, and discuss challenging problems related to the selective differentiation and immune properties of human ESCs.


Assuntos
Células-Tronco Embrionárias/fisiologia , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Humanos
10.
Sci Rep ; 4: 3844, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24457623

RESUMO

Induced pluripotent stem cells (iPSCs) hold much promise in the quest for personalised cell therapies. However, the persistence of founder cell mitochondrial DNA (mtDNA) mutations limits the potential of iPSCs in the development of treatments for mtDNA disease. This problem may be overcome by using oocytes containing healthy mtDNA, to induce somatic cell nuclear reprogramming. However, the extent to which somatic cell mtDNA persists following fusion with human oocytes is unknown. Here we show that human nuclear transfer (NT) embryos contain very low levels of somatic cell mtDNA. In light of a recent report that embryonic stem cells can be derived from human NT embryos, our results highlight the therapeutic potential of NT for mtDNA disease, and underscore the importance of using human oocytes to pursue this goal.


Assuntos
Reprogramação Celular , DNA Mitocondrial/genética , Células-Tronco Embrionárias/metabolismo , Mitocôndrias/genética , Doenças Neurodegenerativas/terapia , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Âmnio/citologia , Âmnio/metabolismo , Diferenciação Celular , Núcleo Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/citologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Mutação/genética , Oócitos/citologia , Reação em Cadeia da Polimerase , Pele/citologia , Pele/metabolismo
11.
PLoS One ; 7(2): e31010, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393356

RESUMO

In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations.


Assuntos
Blastocisto/citologia , Contagem de Células/métodos , Transferência Embrionária/normas , Fertilização in vitro , Técnicas de Reprodução Assistida/instrumentação , Animais , Transferência Embrionária/métodos , Desenho de Equipamento , Feminino , Viabilidade Fetal/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Laboratórios , Camundongos , Variações Dependentes do Observador , Oócitos/citologia , Indução da Ovulação , Análise de Regressão , Injeções de Esperma Intracitoplásmicas/métodos , Temperatura
12.
Curr Biol ; 20(17): 1511-21, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20817533

RESUMO

BACKGROUND: The growing trend for women to postpone childbearing has resulted in a dramatic increase in the incidence of trisomic pregnancies. Maternal age-related miscarriage and birth defects are predominantly a consequence of chromosome segregation errors during the first meiotic division (MI), which involves the segregation of replicated recombined homologous chromosomes. Despite the importance to human reproductive health, the events precipitating female age-related meiotic errors are poorly understood. RESULTS: Here we use a long-lived wild-type mouse strain to show that the ability to segregate chromosomes synchronously during anaphase of MI declines dramatically during female aging. This is preceded by depletion of chromosome-associated cohesin in association with destabilization of chiasmata, the physical linkages between homologous chromosomes, and loss of the tight association between sister centromeres. Loss of cohesin is not due to an age-related decline in the ability of the spindle checkpoint to delay separase-mediated cleavage of cohesin until entry into anaphase I. However, we find that reduced cohesin is accompanied by depletion of Sgo2, which protects centromeric cohesin during MI. CONCLUSIONS: The data indicate that cohesin declines gradually during the long prophase arrest that precedes MI in female mammals. In aged oocytes, cohesin levels fall below the level required to stabilize chiasmata and to hold sister centromeres tightly together, leading to chromosome missegregation during MI. Cohesin loss may be amplified by a concomitant decline in the levels of the centromeric cohesin protector Sgo2. These findings indicate that cohesin is a key molecular link between female aging and chromosome missegregation during MI.


Assuntos
Envelhecimento/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Meiose , Oócitos/citologia , Envelhecimento/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Aberrações Cromossômicas , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Coesinas
14.
Hum Mol Genet ; 15(11): 1894-913, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16644866

RESUMO

Understanding the molecular mechanism by which pluripotency is maintained in human embryonic stem cells (hESC) is important for the development of improved methods to derive, culture and differentiate these into cells of potential therapeutic use. Large-scale transcriptional comparison of the hES-NCL1 line derived from a day 8 embryo with H1 line derived from a day 5 embryo (WiCell Inc.) showed that only 0.52% of the transcripts analysed varied significantly between the two cell lines. This is within the variability range that has been reported when hESC derived from days 5-6 embryos have been compared with each other. This implies that transcriptional differences between the cell lines are likely to reflect their genetic profile rather than the embryonic stage from which they were derived. Bioinformatic analysis of expression changes observed when these cells were induced to differentiate as embryoid bodies suggested that quite a few of the downregulated genes were components of signal transduction networks. Subsequent analysis using western blotting, flow cytometry and antibody arrays implicated components of the PI3K/AKT kinase, MAPK/ERK and NFkappabeta pathways and confirmed that these components are decreased upon differentiation. Disruption of these pathways in isolation using specific inhibitors resulted in loss of pluripotency and/or loss of viability suggesting the importance of such signalling pathways in embryonic stem cell maintenance.


Assuntos
Embrião de Mamíferos/citologia , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/citologia , Sobrevivência Celular , Biologia Computacional , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Cariotipagem , Masculino , Modelos Biológicos , Transdução de Sinais , Transcrição Gênica
15.
Stem Cells ; 23(8): 1035-43, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15983365

RESUMO

The homeobox transcription factor Nanog has been proposed to play a crucial role in the maintenance of the undifferentiated state of murine embryonic stem cells. A human counterpart, NANOG, has been identified, but its function and localization have not hitherto been described. We have used a combination of RNA interference and quantitative real-time polymerase chain reaction to study NANOG in human embryonic stem and embryonic carcinoma cells. Transfection of NANOG-specific small interfering RNAs reduced levels of NANOG transcript and protein and induced activation of the extraembryonic endoderm-associated genes GATA4, GATA6, LAMININ B1, and AFP as well as upregulation of trophectoderm-associated genes CDX2, GATA2, hCG-alpha, and hCG-beta. Immunostaining of preimplantation human embryos showed that NANOG was expressed in the inner cell mass of expanded blastocysts but not in earlier-stage embryos, consistent with a role in the maintenance of pluripotency. Taken together, our findings suggest that NANOG acts as a gatekeeper of pluripotency in human embryonic stem and carcinoma cells by preventing their differentiation to extraembryonic endoderm and trophectoderm lineages.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio/fisiologia , Células-Tronco Pluripotentes/citologia , Blastocisto/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Embrião de Mamíferos/citologia , Células-Tronco de Carcinoma Embrionário , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/genética , Humanos , Proteína Homeobox Nanog , Células-Tronco Neoplásicas , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transfecção , alfa-Fetoproteínas/metabolismo
16.
Dev Biol ; 269(1): 206-19, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15081368

RESUMO

CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1::GFP in oocytes and found that its degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first polar body would be extruded. In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase. However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly stimulates destruction of CSF during mammalian fertilisation.


Assuntos
Cálcio/metabolismo , Ciclina B/metabolismo , Oócitos/metabolismo , Complexo de Endopeptidases do Proteassoma , Animais , Cromátides/metabolismo , Segregação de Cromossomos/fisiologia , Ciclina B1 , Feminino , Meiose/fisiologia , Metáfase/fisiologia , Camundongos , Peptídeo Hidrolases/metabolismo
17.
Stem Cells ; 22(5): 790-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15342943

RESUMO

Human embryonic stem cells (hESCs) have been derived from the inner cell mass (ICM) of day 5-7 blastocysts and hold great promise for research into human developmental biology and the development of cell therapies for the treatment of human diseases. We report here that our novel three-step culture conditions successfully support the development of day-8 human blastocysts, which possess significantly (p <.01) more ICM cells than day-6 blastocysts. Plating of ICMs isolated from day-8 blastocysts resulted in the formation of a colony with hESC morphology from which a new hESC line (hES-NCL1) was derived. Our stem cell line is characterized by the expression of specific cell surface and gene markers: GTCM-2, TG343, TRA1-60, SSEA-4, alkaline phosphatase, OCT-4, NANOG, and REX-1. Cytogenetic analysis of the hESCs revealed that hES-NCL1 line has a normal female (46, XX) karyotype. The pluripotency of the cell line was confirmed by the formation of teratomas after injection into severely combined immunodeficient mice and spontaneous differentiation under in vitro conditions.


Assuntos
Blastocisto/fisiologia , Células-Tronco Pluripotentes/fisiologia , Transplante de Células-Tronco/métodos , Adulto , Fatores Etários , Animais , Antígenos de Superfície/imunologia , Blastocisto/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Separação Celular/métodos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Meios de Cultivo Condicionados/farmacologia , Feminino , Marcadores Genéticos/genética , Humanos , Cariotipagem , Masculino , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Ratos , Teratoma/genética , Teratoma/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa