Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 2): 113798, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35810819

RESUMO

A coordinated observational and modelling campaign targeting biogenic aerosols in the air was performed during spring 2021 at two locations in Northern Europe: Helsinki (Finland) and Siauliai (Lithuania), approximately 500 km from each other in north-south direction. The campaign started on March 1, 2021 in Siauliai (12 March in Helsinki) and continued till mid-May in Siauliai (end of May in Helsinki), thus recording the transition of the atmospheric biogenic aerosols profile from winter to summer. The observations included a variety of samplers working on different principles. The core of the program was based on 2- and 2.4--hourly sampling in Helsinki and Siauliai, respectively, with sticky slides (Hirst 24-h trap in Helsinki, Rapid-E slides in Siauliai). The slides were subsequently processed extracting the DNA from the collected aerosols, which was further sequenced using the 3-rd generation sequencing technology. The core sampling was accompanied with daily and daytime sampling using standard filter collectors. The hourly aerosol concentrations at the Helsinki monitoring site were obtained with a Poleno flow cytometer, which could recognize some of the aerosol types. The sampling campaign was supported by numerical modelling. For every sample, SILAM model was applied to calculate its footprint and to predict anthropogenic and natural aerosol concentrations, at both observation sites. The first results confirmed the feasibility of the DNA collection by the applied techniques: all but one delivered sufficient amount of DNA for the following analysis, in over 40% of the cases sufficient for direct DNA sequencing without the PCR step. A substantial variability of the DNA yield has been noticed, generally not following the diurnal variations of the total-aerosol concentrations, which themselves showed variability not related to daytime. An expected upward trend of the biological material amount towards summer was observed but the day-to-day variability was large. The campaign DNA analysis produced the first high-resolution dataset of bioaerosol composition in the North-European spring. It also highlighted the deficiency of generic DNA databases in applications to atmospheric biota: about 40% of samples were not identified with standard bioinformatic methods.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera/análise , Monitoramento Ambiental/métodos , Europa (Continente) , Estações do Ano
2.
Indoor Air ; 32(10): e13118, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36305066

RESUMO

SARS-CoV-2 has been detected both in air and on surfaces, but questions remain about the patient-specific and environmental factors affecting virus transmission. Additionally, more detailed information on viral sampling of the air is needed. This prospective cohort study (N = 56) presents results from 258 air and 252 surface samples from the surroundings of 23 hospitalized and eight home-treated COVID-19 index patients between July 2020 and March 2021 and compares the results between the measured environments and patient factors. Additionally, epidemiological and experimental investigations were performed. The proportions of qRT-PCR-positive air (10.7% hospital/17.6% homes) and surface samples (8.8%/12.9%) showed statistical similarity in hospital and homes. Significant SARS-CoV-2 air contamination was observed in a large (655.25 m3 ) mechanically ventilated (1.67 air changes per hour, 32.4-421 L/s/patient) patient hall even with only two patients present. All positive air samples were obtained in the absence of aerosol-generating procedures. In four cases, positive environmental samples were detected after the patients had developed a neutralizing IgG response. SARS-CoV-2 RNA was detected in the following particle sizes: 0.65-4.7 µm, 7.0-12.0 µm, >10 µm, and <100 µm. Appropriate infection control against airborne and surface transmission routes is needed in both environments, even after antibody production has begun.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , RNA Viral , Estudos Prospectivos , Aerossóis e Gotículas Respiratórios
3.
Acta Anaesthesiol Scand ; 66(4): 463-472, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34951703

RESUMO

BACKGROUND: Intubation, laryngoscopy, and extubation are considered highly aerosol-generating procedures, and additional safety protocols are used during COVID-19 pandemic in these procedures. However, previous studies are mainly experimental and have neither analyzed staff exposure to aerosol generation in the real-life operating room environment nor compared the exposure to aerosol concentrations generated during normal patient care. To assess operational staff exposure to potentially infectious particle generation during general anesthesia, we measured particle concentration and size distribution with patients undergoing surgery with Optical Particle Sizer. METHODS: A single-center observative multidisciplinary clinical study in Helsinki University Hospital with 39 adult patients who underwent general anesthesia with tracheal intubation. Mean particle concentrations during different anesthesia procedures were statistically compared with cough control data collected from 37 volunteers to assess the differences in particle generation. RESULTS: This study measured 25 preoxygenations, 30 mask ventilations, 28 intubations, and 24 extubations. The highest total aerosol concentration of 1153 particles (p)/cm³ was observed during mask ventilation. Preoxygenations, mask ventilations, and extubations as well as uncomplicated intubations generated mean aerosol concentrations statistically comparable to coughing. It is noteworthy that difficult intubation generated significantly fewer aerosols than either uncomplicated intubation (p = .007) or coughing (p = 0.006). CONCLUSIONS: Anesthesia induction generates mainly small (<1 µm) aerosol particles. Based on our results, general anesthesia procedures are not highly aerosol-generating compared with coughing. Thus, their definition as high-risk aerosol-generating procedures should be re-evaluated due to comparable exposures during normal patient care. IMPLICATION STATEMENT: The list of aerosol-generating procedures guides the use of protective equipments in hospitals. Intubation is listed as a high-risk aerosol-generating procedure, however, aerosol generation has not been measured thoroughly. We measured aerosol generation during general anesthesia. None of the general anesthesia procedures generated statistically more aerosols than coughing and thus should not be considered as higher risk compared to normal respiratory activities.


Assuntos
COVID-19 , Tosse , Adulto , Aerossóis , Anestesia Geral , Humanos , Pandemias
4.
Eur Arch Otorhinolaryngol ; 279(2): 825-834, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34623498

RESUMO

OBJECTIVE: COVID-19 spreads through aerosols produced in coughing, talking, exhalation, and also in some surgical procedures. Use of CO2 laser in laryngeal surgery has been observed to generate aerosols, however, other techniques, such cold dissection and microdebrider, have not been sufficiently investigated. We aimed to assess whether aerosol generation occurs during laryngeal operations and the effect of different instruments on aerosol production. METHODS: We measured particle concentration generated during surgeries with an Optical Particle Sizer. Cough data collected from volunteers and aerosol concentration of an empty operating room served as references. Aerosol concentrations when using different techniques and equipment were compared with references as well as with each other. RESULTS: Thirteen laryngological surgeries were evaluated. The highest total aerosol concentrations were observed when using CO2 laser and these were significantly higher than the concentrations when using microdebrider or cold dissection (p < 0.0001, p < 0.0001) or in the background or during coughing (p < 0.0001, p < 0.0001). In contrast, neither microdebrider nor cold dissection produced significant concentrations of aerosol compared with coughing (p = 0.146, p = 0.753). In comparing all three techniques, microdebrider produced the least aerosol particles. CONCLUSIONS: Microdebrider and cold dissection can be regarded as aerosol-generating relative to background reference concentrations, but they should not be considered as high-risk aerosol-generating procedures, as the concentrations are low and do not exceed those of coughing. A step-down algorithm from CO2 laser to cold instruments and microdebrider is recommended to lower the risk of airborne infections among medical staff.


Assuntos
COVID-19 , Lasers de Gás , Aerossóis , Dióxido de Carbono , Humanos , SARS-CoV-2
5.
J Chem Phys ; 140(17): 174301, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24811635

RESUMO

Nucleation rates of n-propanol were investigated in the Laminar Flow Diffusion Chamber. Nucleation temperatures between 270 and 300 K and rates between 10(0) and 10(6) cm(-3) s(-1) were achieved. Since earlier measurements of n-butanol and n­pentanol suggest a dependence of nucleation rates on carrier gas pressure, similar conditions were adjusted for these measurements. The obtained data fit well to results available from literature. A small positive pressure effect was found which strengthen the assumption that this effect is attributed to the carbon chain length of the n-alcohol [D. Brus, A. P. Hyvärinen, J. Wedekind, Y. Viisanen, M. Kulmala, V. Zdímal, J. Smolík, and H. Lihavainen, J. Chem. Phys. 128, 134312 (2008)] and might be less intensive for substances in the homologous series with higher equilibrium vapor pressure. A comparison with the theoretical approach by Wedekind et al. [Phys. Rev. Lett. 101, 12 (2008)] shows that the effect goes in the same direction but that the intensity is much stronger in experiments than in theory.

6.
J Chem Phys ; 132(24): 244505, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20590204

RESUMO

Homogeneous nucleation rates of water at temperatures between 240 and 270 K were measured in a laminar flow diffusion chamber at ambient pressure and helium as carrier gas. Being in the range of 10(2)-10(6) cm(-3) s(-1), the experimental results extend the nucleation rate data from literature consistently and fill a pre-existing gap. Using the macroscopic vapor pressure, density, and surface tension for water we calculate the nucleation rates predicted by classic nucleation theory (CNT) and by the empirical correction function of CNT by Wolk and Strey [J. Phys. Chem. B 105, 11683 (2001)]. As in the case of other systems (e.g., alcohols), CNT predicts a stronger temperature dependence than experimentally observed, whereas the agreement with the empirical correction function is good for all data sets. Furthermore, the isothermal nucleation rate curves allow us to determine the experimental critical cluster sizes by use of the nucleation theorem. A comparison with the critical cluster sizes calculated by use of the Gibbs-Thomson equation is remarkably good for small cluster sizes, for bigger ones the Gibbs-Thomson equation overestimates the cluster sizes.


Assuntos
Água/química , Difusão , Temperatura
7.
Science ; 327(5970): 1243-6, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20203046

RESUMO

Nucleation is a fundamental step in atmospheric new-particle formation. However, laboratory experiments on nucleation have systematically failed to demonstrate sulfuric acid particle formation rates as high as those necessary to account for ambient atmospheric concentrations, and the role of sulfuric acid in atmospheric nucleation has remained a mystery. Here, we report measurements of new particles (with diameters of approximately 1.5 nanometers) observed immediately after their formation at atmospherically relevant sulfuric acid concentrations. Furthermore, we show that correlations between measured nucleation rates and sulfuric acid concentrations suggest that freshly formed particles contain one to two sulfuric acid molecules, a number consistent with assumptions that are based on atmospheric observations. Incorporation of these findings into global models should improve the understanding of the impact of secondary particle formation on climate.

8.
Phys Rev Lett ; 101(12): 125703, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18851391

RESUMO

The influence of the pressure of a chemically inert carrier gas on the nucleation rate is one of the biggest puzzles in the research of gas-liquid nucleation. Experiments can show a positive effect, a negative effect, or no effect at all. The same experiment may show both trends for the same substance depending on temperature, or for different substances at the same temperature. We show how this ambiguous effect naturally arises from the competition of two contributions: nonisothermal effects and pressure-volume work. Our model clarifies seemingly contradictory experimental results and quantifies the variation of the nucleation ability of a substance in the presence of an ambient gas. Our findings are corroborated by molecular dynamics simulations and might have important implications since nucleation in experiments, technical applications, and nature practically always occurs in the presence of an ambient gas.

9.
J Phys Chem A ; 111(50): 12995-3002, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18044850

RESUMO

The surface tension of adipic aqueous solutions was measured as a function of temperature (T=278-313 K) and adipic acid mole fraction (X=0.000-0.003) using the Wilhelmy plate method. A parametrization fitted to these data is presented. The evaporation rates of binary water-malonic and water-adipic acid droplets were measured with a TDMA technique at different temperatures (T=293-300 K) and relative humidities (58-80%), and the saturation vapor pressures of subcooled liquid malonic and adipic acids were derived from the data using a binary evaporation model. The temperature dependence of the vapor pressures was obtained as least-squares fits to the derived vapor pressures: ln(Psat,l) (Pa)=220.2389-22634.96/T (K)-26.66767 ln T (K) for malonic acid and ln(Psat,l) (Pa)=140.6704-18230.97/T (K)-15.48011 ln T (K) for adipic acid.


Assuntos
Adipatos/química , Malonatos/química , Análise dos Mínimos Quadrados , Soluções , Tensão Superficial , Temperatura
10.
J Chem Phys ; 124(22): 224304, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16784271

RESUMO

Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.

11.
J Phys Chem A ; 110(45): 12448-55, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17091949

RESUMO

This work is an assessment of the capabilities of the FLUENT-FPM software package to simulate actual nucleation experiments. In the first step, we verified the FPM condensation routine with the NEWALC code. Next, homogeneous nucleation of n-butanol, n-pentanol, and n-hexanol in a laminar flow diffusion chamber (LFDC) was simulated and the results were compared to experimental data and an earlier model, which was described by Lihavainen and Viisanen (2001) and will be called femtube2 in the following. Models based on classical nucleation theory typically give too small nucleation rates for alcohol vapors. Also, the FPM underestimates particle production by several orders of magnitude, the factor being a constant for each nucleation isotherm (i.e., at constant nucleation temperature). However, experimental observations beyond exact particle concentrations can be reproduced. We found a behavior similar to the experiment for the dependence of the concentration of nucleated particles N on the flow rate. After correcting the FPM nucleation rate by a constant factor, experimentally found vapor depletion effects could be simulated. Comparing the FPM and femtube2, we observed that the FPM systematically predicts lower saturation ratio values. Further investigation of vapor depletion showed significant differences between the FPM and the femtube2 model. Furthermore, FPM simulations confirm the earlier found carrier gas effect (Lihavainen and Viisanen, 2001).

12.
J Chem Phys ; 122(21): 214506, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15974753

RESUMO

Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results.

13.
J Chem Phys ; 120(24): 11621-33, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268196

RESUMO

Nucleation rate isotherms of n-butanol, n-pentanol, n-hexanol, n-heptanol, and n-octanol were measured in a laminar flow diffusion chamber using helium as carrier gas. The measurements were made at 250-310 K, corresponding to reduced temperatures of 0.43-0.50, and at atmospheric pressure. Experimental nucleation rate range was from 10(3) to 10(7) cm(-3) s(-1). The expression and accuracy of thermodynamic parameters, in particular equilibrium vapor pressure, were found to have a significant effect on calculated nucleation rates. The results were compared to the classical nucleation theory (CNT), the self-consistency corrected classical theory (SCC) and the Hale's scaled model of the CNT. The average ratio between the experimental and theoretical nucleation rates for all alcohols used was 1.5x10(3) when the CNT was used, and 0.2x10(-1) when the SCC was used and 0.7x10(-1) when the Hale's scaled theory was used. The average values represent all the alcohols used at the same reduced temperatures. The average ratio was about the same throughout the temperature range, although J(exp)/J(the) calculated with the Hale's scaled theory increased slightly with increasing temperature. The saturation ratio dependency was predicted closest to experiment with the classical nucleation theory. The nucleation rates were compared to those found in the literature. The measurements were in reasonable agreement with each other. The molecular content of critical alcohol clusters was between 35 and 80 molecules. At a fixed reduced temperature, the number of molecules in a critical cluster decreased as a function of alcohol carbon chain length. The number of molecules in critical clusters was compared to those predicted by the Kelvin equation. The theory predicted the critical cluster sizes well.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa