RESUMO
Due to their structural, morphological, and behavioral characteristics (e.g., large volume and adjustable pore size, wide functionalization possibilities, excellent biocompatibility, stability, and controlled biodegradation, the ability to protect cargoes against premature release and unwanted degradation), mesoporous silica particles (MSPs) are emerging as a promising diagnostic and delivery platform with a key role in the development of next-generation theranostics, nanovaccines, and formulations. In this study, MSPs with customized characteristics in-lab prepared were fully characterized and used as carriers for doxorubicin (DOX). The drug loading capacity and the release profile were evaluated in media with different pH values, mimicking the body conditions. The release data were fitted to Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin kinetic models to evaluate the release constant and the mechanism. The in vitro behavior of functionalized silica particles showed an enhanced cytotoxicity on human breast cancer (MCF-7) cells. Bio- and mucoadhesion on different substrates (synthetic cellulose membrane and porcine tissue mucosa)) and antimicrobial activity were successfully assessed, proving the ability of the OH- or the organically modified MSPs to act as antimicrobial and mucoadhesive platforms for drug delivery systems with synergistic effects.
Assuntos
Anti-Infecciosos , Neoplasias da Mama , Nanopartículas , Animais , Humanos , Suínos , Feminino , Dióxido de Silício/química , Nanopartículas/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias da Mama/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Portadores de Fármacos/química , Porosidade , Liberação Controlada de FármacosRESUMO
Stretchable electrodes are more suitable for dielectric elastomer transducers (DET) the closer the mechanical characteristics of the electrodes and elastomer are. Here, a solvent-free synthesis and processing of conductive composites with excellent electrical and mechanical properties for transducers are presented. The composites are prepared by in situ polymerization of cyclosiloxane monomers in the presence of graphene nanoplatelets. The low viscosity of the monomer allows for easy dispersion of the filler, eliminating the need for a solvent. After the polymerization, a cross-linking agent is added at room temperature, the composite is solvent-free screen-printed, and the cross-linking reaction is initiated by heating. The best material shows conductivity σ = 8.2 S cm-1 , Young's modulus Y10% = 167 kPa, and strain at break s = 305%. The electrode withstands large strains without delamination, shows no conductivity losses during repeated operation for 500 000 cycles, and has an excellent recovery of electrical properties upon being stretched at strains of up to 180%. Reliable prototype capacitive sensors and stack actuators are manufactured by screen-printing the conductive composite on the dielectric film. Stack actuators manufactured from dielectric and conductive materials that are synthesized solvent-free are demonstrated. The stack actuators even self-repair after a breakdown event.
Assuntos
Elastômeros , Transdutores , Condutividade Elétrica , Eletrodos , SolventesRESUMO
Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), µ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3â4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3â2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3â2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.
RESUMO
Some films based on electromechanically active polymer composites have been prepared. Polydimethylsiloxane-α,ω-diols (PDMSs) having different molecular masses (Mv=60 700 and Mv=44 200) were used as matrix in which two different active fillers were incorporated: titanium dioxide in situ generated from its titanium isopropoxide precursor and silica particles functionalized with polar aminopropyl groups on surface. A reference sample based on simple crosslinked PDMS was also prepared. The composites processed as films were investigated to evaluate their ability to act as efficient electromechanical actuators for potential biomedical application. Thus, the surface morphology of interest for electrodes compliance was analysed by atomic force microscopy. Mechanical and dielectric characteristics were evaluated by tensile tests and dielectric spectroscopy, respectively. Electromechanical actuation responses were measured by interferometry. The biocompatibility of the obtained materials has been verified through tests in vitro and, for valuable films, in vivo. The experimental, clinical and anatomopathological evaluation of the in vivo tested samples did not reveal significant pathological modifications.