Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071836

RESUMO

In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.


Assuntos
Metabolismo Energético , Hipóxia/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Gerenciamento Clínico , Suscetibilidade a Doenças , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Biol Chem ; 398(3): 303-317, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27727142

RESUMO

Significant metabolic changes occur in the shift from resting to activated cellular status in inflammation. Thus, changes in expression of a large number of genes and extensive metabolic reprogramming gives rise to acquisition of new functions (e.g. production of cytokines, intermediates for biosynthesis, lipid mediators, PGE, ROS and NO). In this context, mitochondrial carriers, which catalyse the transport of solute across mitochondrial membrane, change their expression to transport mitochondrially produced molecules, among which citrate and succinate, to be used as intracellular signalling molecules in inflammation. This review summarises the mitochondrial carriers studied so far that are, directly or indirectly, involved in inflammation.

3.
Biochim Biophys Acta ; 1847(8): 729-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25917893

RESUMO

The mitochondrial citrate-malate exchanger (CIC), a known target of acetylation, is up-regulated in activated immune cells and plays a key role in the production of inflammatory mediators. However, the role of acetylation in CIC activity is elusive. We show that CIC is acetylated in activated primary human macrophages and U937 cells and the level of acetylation is higher in glucose-deprived compared to normal glucose medium. Acetylation enhances CIC transport activity, leading to a higher citrate efflux from mitochondria in exchange with malate. Cytosolic citrate levels do not increase upon activation of cells grown in deprived compared to normal glucose media, indicating that citrate, transported from mitochondria at higher rates from acetylated CIC, is consumed at higher rates. Malate levels in the cytosol are lower in activated cells grown in glucose-deprived compared to normal glucose medium, indicating that this TCA intermediate is rapidly recycled back into the cytosol where it is used by the malic enzyme. Additionally, in activated cells CIC inhibition increases the NADP+/NADPH ratio in glucose-deprived cells; this ratio is unchanged in glucose-rich grown cells due to the activity of the pentose phosphate pathway. Consistently, the NADPH-producing isocitrate dehydrogenase level is higher in activated glucose-deprived as compared to glucose rich cells. These results demonstrate that, in the absence of glucose, activated macrophages increase CIC acetylation to enhance citrate efflux from mitochondria not only to produce inflammatory mediators but also to meet the NADPH demand through the actions of isocitrate dehydrogenase and malic enzyme.


Assuntos
Proteínas de Transporte/metabolismo , Ácido Cítrico/metabolismo , Ativação de Macrófagos/fisiologia , Malatos/metabolismo , Mitocôndrias/metabolismo , NADP/metabolismo , Acetilação , Transporte Biológico , Western Blotting , Células Cultivadas , Citosol/efeitos dos fármacos , Citosol/metabolismo , Glucose/metabolismo , Humanos , Imunoprecipitação , Interferon gama/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Sirtuína 3/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células U937
4.
Immunology ; 149(4): 423-431, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27502741

RESUMO

Inflammatory conditions and oxidative stress have a crucial role in Down syndrome (DS). Emerging studies have also reported an altered lipid profile in the early stages of DS. Our previous works demonstrate that citrate pathway activation is required for oxygen radical production during inflammation. Here, we find up-regulation of the citrate pathway and down-regulation of carnitine/acylcarnitine carrier and carnitine palmitoyl-transferase 1 genes in cells from children with DS. Interestingly, when the citrate pathway is inhibited, we observe a reduction in oxygen radicals as well as in lipid peroxidation levels. Our preliminary findings provide evidence for a citrate pathway dysregulation, which could be related to some phenotypic traits of people with DS.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Carnitina Aciltransferases/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina/metabolismo , Ácido Cítrico/metabolismo , Síndrome de Down/metabolismo , Leucócitos/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Ânions/genética , Carnitina Aciltransferases/genética , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular Transformada , Pré-Escolar , Síndrome de Down/genética , Síndrome de Down/imunologia , Regulação da Expressão Gênica , Humanos , Peroxidação de Lipídeos , Proteínas Mitocondriais/genética , Transportadores de Ânions Orgânicos , Estresse Oxidativo , Fenótipo , Característica Quantitativa Herdável
5.
Physiol Genomics ; 47(8): 299-307, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26038395

RESUMO

The bidirectional cross talk between nuclear and mitochondrial DNA is essential for cellular homeostasis and proper functioning. Mitochondria depend on nuclear contribution for much of their functionality, but their activities have been recently recognized to control nuclear gene expression as well as cell function in many different ways. Epigenetic mechanisms, which tune gene expression in response to environmental stimuli, are key regulatory events at the interplay between mitochondrial and nuclear interactions. Emerging findings indicate that epigenetic factors can be targets or instruments of mitochondrial-nuclear cross talk. Additionally, the growing interest into mtDNA epigenetic modifications opens new avenues into the interaction mechanisms between mitochondria and nucleus. In this review we summarize the points of mitochondrial and nuclear reciprocal control involving epigenetic factors, focusing on the role of mitochondrial genome and metabolism in shaping epigenetic modulation of gene expression. The relevance of the new findings on the methylation of mtDNA is also highlighted as a new frontier in the complex scenario of mitochondrial-nuclear communication.


Assuntos
Epigênese Genética , Mitocôndrias/genética , Animais , Núcleo Celular/genética , Citosina/metabolismo , Metilação de DNA/genética , DNA Mitocondrial/genética , Humanos
6.
J Biol Chem ; 289(48): 33137-48, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25320081

RESUMO

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Células CHO , Cricetinae , Cricetulus , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte de Nucleotídeos/química , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , RNA/genética , RNA/metabolismo , RNA Mitocondrial , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Biochim Biophys Acta ; 1839(11): 1217-1225, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25072865

RESUMO

The chronic induction of inflammation underlies multiple pathological conditions, including metabolic, autoimmune disorders and cancer. The mitochondrial citrate carrier (CIC), encoded by the SLC25A1 gene, promotes the export of citrate from the mitochondria to the cytoplasm, a process that profoundly influences energy balance in the cells. We have previously shown that SLC25A1 is a target gene for lipopolysaccharide signaling and promotes the production of inflammatory mediators. We now demonstrate that SLC25A1 is induced at the transcriptional level by two key pro-inflammatory cytokines, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ), and such induction involves the activity of the nuclear factor kappa B and STAT1 transcription factors. By studying the down-stream events following SLC25A1 activation during signals that mimic inflammation, we demonstrate that CIC is required for regulating the levels of nitric oxide and of prostaglandins by TNFα or IFNγ. Importantly, we show that the citrate exported from mitochondria via CIC and its downstream metabolic intermediate, acetyl-coenzyme A, are necessary for TNFα or IFNγ to induce nitric oxide and prostaglandin production. These findings provide the first line of evidence that the citrate export pathway, via CIC, is central for cytokine-induced inflammatory signals and shed new light on the relationship between energy metabolism and inflammation.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Inflamação/imunologia , Interferon gama/imunologia , Proteínas Mitocondriais/fisiologia , Fator de Necrose Tumoral alfa/imunologia , Proteínas de Transporte de Ânions/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Interferon gama/farmacologia , Proteínas Mitocondriais/genética , NF-kappa B/fisiologia , Transportadores de Ânions Orgânicos , Fator de Necrose Tumoral alfa/farmacologia , Células U937
8.
Biochim Biophys Acta ; 1831(6): 1027-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23370576

RESUMO

The citrate carrier (CIC), a nuclear-encoded protein located in the mitochondrial inner membrane, plays an important metabolic role in the transport of acetyl-CoA from the mitochondrion to the cytosol in the form of citrate for fatty acid and cholesterol synthesis. Citrate has been reported to be essential for fibroblast differentiation into fat cells. Because peroxisome proliferator-activated receptor-gamma (PPARγ) is known to be one of the master regulators of adipogenesis, we aimed to study the regulation of CIC by the PPARγ ligand rosiglitazone (BRL) in 3T3-L1 fibroblasts and in adipocytes. We demonstrated that BRL up-regulated CIC mRNA and protein levels in fibroblasts, while it did not elicit any effects in mature adipocytes. The enhancement of CIC levels upon BRL treatment was reversed using the PPARγ antagonist GW9662, addressing how this effect was mediated by PPARγ. Functional experiments using a reporter gene containing rat CIC promoter showed that BRL enhanced CIC promoter activity. Mutagenesis studies, electrophoretic-mobility-shift assay and chromatin-immunoprecipitation analysis revealed that upon BRL treatment, PPARγ and Sp1 are recruited on the Sp1-containing region within the CIC promoter, leading to an increase in CIC expression. In addition, mithramycin, a specific inhibitor for Sp1-DNA binding activity, abolished the PPARγ-mediated up-regulation of CIC in fibroblasts. The stimulatory effects of BRL disappeared in mature adipocytes in which PPARγ/Sp1 complex recruited SMRT corepressor to the Sp1 site of the CIC promoter. Taken together, our results contribute to clarify the molecular mechanisms by which PPARγ regulates CIC expression during the differentiation stages of fibroblasts into mature adipocytes.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , PPAR gama/metabolismo , Proteínas Repressoras/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Luciferases/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Correpressor 2 de Receptor Nuclear/antagonistas & inibidores , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , PPAR gama/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Tiazolidinedionas/farmacologia , Ativação Transcricional , Regulação para Cima
9.
Biol Chem ; 395(4): 387-99, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24445237

RESUMO

Citrate is an important substrate in cellular energy metabolism. It is produced in the mitochondria and used in the Krebs cycle or released into cytoplasm through a specific mitochondrial carrier, CIC. In the cytosol, citrate and its derivatives, acetyl-CoA and oxaloacetate, are used in normal and pathological processes. Beyond the classical role as metabolic regulator, recent studies have highlighted that citrate is involved in inflammation, cancer, insulin secretion, histone acetylation, neurological disorders, and non-alcoholic fatty liver disease. Monitoring changes in the citrate levels could therefore potentially be used as diagnostic tool. This review highlights these new aspects of citrate functions.


Assuntos
Ácido Cítrico/metabolismo , Neoplasias/metabolismo , Acetilação , Animais , Histonas/metabolismo , Humanos , Inflamação/metabolismo , Insulina/metabolismo , Secreção de Insulina , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
10.
Mol Genet Metab ; 113(1-2): 27-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25087163

RESUMO

Homocysteine, a sulfur-containing amino acid derived from the methionine metabolism, is located at the branch point of two pathways of the methionine cycle, i.e. remethylation and transsulfuration. Gene abnormalities in the enzymes catalyzing reactions in both pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is associated with increased risk for congenital disorders, including neural tube closure defects, heart defects, cleft lip/palate, Down syndrome, and multi-system abnormalities in adults. Since hyperhomocysteinemia is known to affect the extent of DNA methylation, it is likely that abnormal DNA methylation during embryogenesis, may be a pathogenic factor for these congenital disorders. In this review we highlight the importance of homocysteinemia by describing the genes encoding for enzymes of homocysteine metabolism relevant to the clinical practice, especially cystathionine-ß-synthase and methylenetetrahydrofolate reductase mutations, and the impairment of related metabolites levels. Moreover, a possible correlation between hyperhomocysteine and congenital disorders through the involvement of abnormal DNA methylation during embryogenesis is discussed. Finally, the relevance of present and future diagnostic tools such as tandem mass spectrometry and next generation sequencing in newborn screening is highlighted.


Assuntos
Metilação de DNA , Hiper-Homocisteinemia/diagnóstico , Hiper-Homocisteinemia/genética , Triagem Neonatal , Humanos , Hiper-Homocisteinemia/metabolismo , Recém-Nascido , Programas de Rastreamento , Triagem Neonatal/métodos , Fatores de Risco
11.
Biochem Biophys Res Commun ; 440(1): 105-11, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24051091

RESUMO

Growing evidence suggests that energy metabolism and inflammation are closely linked and that cross-talk between these processes is fundamental to the pathogenesis of many human diseases. However, the molecular mechanisms underlying these observations are still poorly understood. Here we describe the key role of ATP-citrate lyase (ACLY) in inflammation. We find that ACLY mRNA and protein levels markedly and quickly increase in activated macrophages. Importantly, ACLY activity inhibition as well as ACLY gene silencing lead to reduced nitric oxide, reactive oxygen species and prostaglandin E2 inflammatory mediators. In conclusion, we present a direct role for ACLY in macrophage inflammatory metabolism.


Assuntos
ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Adulto , Linhagem Celular , Células Cultivadas , Dinoprostona/imunologia , Humanos , Mediadores da Inflamação/imunologia , Interferon gama/imunologia , Macrófagos/metabolismo , NF-kappa B/imunologia , Óxido Nítrico/imunologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima
12.
Mol Genet Metab ; 110(1-2): 25-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23920043

RESUMO

Recent expansion of our knowledge on epigenetic changes strongly suggests that not only nuclear DNA (nDNA), but also mitochondrial DNA (mtDNA) may be subjected to epigenetic modifications related to disease development, environmental exposure, drug treatment and aging. Thus, mtDNA methylation is attracting increasing attention as a potential biomarker for the detection and diagnosis of diseases and the understanding of cellular behavior in particular conditions. In this paper we review the current advances in mtDNA methylation studies with particular attention to the evidences of mtDNA methylation changes in diseases and physiological conditions so far investigated. Technological advances for the analysis of epigenetic variations are promising tools to provide insights into methylation of mtDNA with similar resolution levels as those reached for nDNA. However, many aspects related to mtDNA methylation are still unclear. More studies are needed to understand whether and how changes in mtDNA methylation patterns, global and gene specific, are associated to diseases or risk factors.


Assuntos
Biomarcadores , Metilação de DNA/genética , DNA Mitocondrial/genética , Epigênese Genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , S-Adenosil-Homocisteína
13.
J Bioenerg Biomembr ; 45(1-2): 1-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23054077

RESUMO

The 2-oxoglutarate carrier (OGC) belongs to the mitochondrial carrier protein family whose members are responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. Initially, OGC was characterized by determining substrate specificity, kinetic parameters of transport, inhibitors and molecular probes that form covalent bonds with specific residues. It was shown that OGC specifically transports oxoglutarate and certain carboxylic acids. The substrate specificity combination of OGC is unique, although many of its substrates are also transported by other mitochondrial carriers. The abundant recombinant expression of bovine OGC in Escherichia coli and its ability to functionally reconstitute into proteoliposomes made it possible to deduce the individual contribution of each and every residue of OGC to the transport activity by a complete set of cys-scanning mutants. These studies give experimental support for a substrate binding site constituted by three major contact points on the even-numbered α-helices and identifies other residues as important for transport function through their crucial positions in the structure for conserved interactions and the conformational changes of the carrier during the transport cycle. The results of these investigations have led to utilize OGC as a model protein for understanding the transport mechanism of mitochondrial carriers.


Assuntos
Citoplasma , Ácidos Cetoglutáricos , Proteínas de Membrana Transportadoras , Mitocôndrias , Proteínas Mitocondriais , Modelos Biológicos , Substituição de Aminoácidos , Animais , Transporte Biológico Ativo/fisiologia , Bovinos , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli , Humanos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutagênese , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
14.
Biology (Basel) ; 12(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37372061

RESUMO

The nuclear factor kappa B (NF-κB) is a family of transcription factors that, beyond their numberless functions in various cell processes, play a pivotal role in regulating immune cell activation. Two main pathways-canonical and non-canonical-are responsible for NF-κB activation and heterodimer translocation into the nucleus. A complex crosstalk between NF-κB signaling and metabolism is emerging in innate immunity. Metabolic enzymes and metabolites regulate NF-κB activity in many cases through post-translational modifications such as acetylation and phosphorylation. On the other hand, NF-κB affects immunometabolic pathways, including the citrate pathway, thereby building an intricate network. In this review, the emerging findings about NF-κB function in innate immunity and the interplay between NF-κB and immunometabolism have been discussed. These outcomes allow for a deeper comprehension of the molecular mechanisms underlying NF-κB function in innate immune cells. Moreover, the new insights are important in order to perceive NF-κB signaling as a potential therapeutic target for inflammatory/immune chronic diseases.

15.
Biochem J ; 438(3): 433-6, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21787310

RESUMO

The mitochondrial CIC (citrate carrier) catalyses the efflux of citrate from the mitochondrial matrix in exchange for cytosolic malate. In the present paper we show that CIC mRNA and protein markedly increase in lipopolysaccharide-activated immune cells. Moreover, CIC gene silencing and CIC activity inhibition significantly reduce production of NO, reactive oxygen species and prostaglandins. These results demonstrate for the first time that CIC has a critical role in inflammation.


Assuntos
Proteínas de Transporte/fisiologia , Mediadores da Inflamação/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Células Cultivadas , Citosol/metabolismo , Inativação Gênica , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima
16.
Biology (Basel) ; 11(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35625520

RESUMO

The strong relationship between metabolic alterations and non-alcoholic steatohepatitis (NASH) suggests a pathogenic interplay. However, many aspects have not yet been fully clarified. Nowadays, NASH is becoming the main cause of liver-associated morbidity and mortality. Therefore, an effort to understand the mechanisms underlying the pathogenesis of NASH is critical. Among the nuclear receptor transcription factors, peroxisome-proliferator-activated receptor alpha (PPARα) is highly expressed in the liver, where it works as a pivotal transcriptional regulator of the intermediary metabolism. In this context, PPARα's function in regulating the lipid metabolism is essential for proper liver functioning. Here, we review metabolic liver genes under the control of PPARα and discuss how this aspect can impact the inflammatory condition and pathogenesis of NASH.

17.
Biochem Biophys Res Commun ; 404(1): 376-81, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21130740

RESUMO

This study investigates the transcriptional role of the human mitochondrial carnitine/acylcarnitine carrier (CAC) proximal promoter. Through deletion analysis, an activation domain (-334/-80 bp) was identified which contains FOXA and Sp1 active sites. The wild-type (but not mutated) -334/-80 bp region of the CAC gene conferred 74% LUC transgene activity in HepG2 cells, 17% in HEK293 cells and 14% in SK-N-SH cells as compared to that observed with the entire -1503/+3 bp proximal promoter. Overexpression and silencing of FOXA2 or Sp1 in HepG2 cells enhanced and diminished, respectively, LUC activity, CAC transcript and CAC protein. In HEK293 and SK-N-SH cells, which do not contain FOXA1-3, LUC activity was increased by FOXA2 overexpression to a greater extent than in HepG2 cells. Both FOXA2 and Sp1 in HepG2, and only Sp1 in HEK293 and SK-N-SH cells, were found to be bound to the CAC proximal promoter. These results show that FOXA and Sp1 sites in HepG2 cells and only the Sp1 site in HEK293 and SK-N-SH cells have a critical role in the transcriptional regulation of the CAC proximal promoter.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/enzimologia , Fator de Transcrição Sp1/metabolismo , Sítios de Ligação/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Mutação , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética , Transcrição Gênica
18.
Biochem Biophys Res Commun ; 412(1): 86-91, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21798247

RESUMO

The transcription factor Sp1 regulates expression of numerous genes involved in many cellular processes. Different post-transcriptional modifications can influence the transcriptional control activity and stability of Sp1. In addition to these modifications, alternative splicing isoforms may also be the basis of its distinct functional activities. In this study, we identified a novel alternative splice isoform of Sp1 named Sp1c. This variant is generated by exclusion of a short domain, which we designate α, through alternative splice acceptor site usage in the exon 3. The existence of this new isoform was confirmed in vivo by Western blotting analysis. Although at very low levels, Sp1c is ubiquitously expressed, as seen in its full-length Sp1. A preliminary characterization of Sp1c shows that: (a) Sp1c works as stronger activator of transcription than full-length Sp1; (b) percentage of HEK293 Sp1c-overexpressing cells is higher in G1 phase and lower in S phase than percentage of HEK293 Sp1-overexpressing cells.


Assuntos
Fator de Transcrição Sp1/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Processamento Alternativo , Sequência de Bases , Ciclo Celular/genética , Éxons , Genes Mitocondriais , Células HEK293 , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fator de Transcrição Sp1/genética , Transativadores/genética
19.
Mol Genet Metab ; 102(3): 378-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21195648

RESUMO

In Down's syndrome there is evidence that increased gene expression coding for specific cystathionine beta-synthase translates directly into biochemical aberrations, which result in a biochemical and metabolic imbalance of the methyl status. This event is destined to impact mitochondrial function since methylation is a necessary event in mitochondria and relies on the availability and uptake of the methyl donor S-adenosylmethionine. Indeed mitochondrial dysfunctions have been widely described in Down's syndrome, but they have never been correlated to a possible mitochondrial methyl unbalance. In the present study we find that the mitochondrial levels of S-adenosylmethionine are reduced in Down's syndrome compared to control cells demonstrating the effect of the methyl unbalance on mitochondria. The possible role of methylation in mitochondria is discussed and some preliminary results on a possible methylation target are presented.


Assuntos
Síndrome de Down/fisiopatologia , Glutationa/metabolismo , Mitocôndrias/metabolismo , Adolescente , Proteínas de Transporte/genética , Linhagem Celular Transformada , Criança , Pré-Escolar , Citosol/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Lactente , Metilação , Mitocôndrias/genética , S-Adenosilmetionina/metabolismo
20.
Biochem Biophys Res Commun ; 385(2): 220-4, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19445897

RESUMO

In this study, we have investigated the transcriptional role of the FOXA site present in the promoter of the mitochondrial citrate carrier (CIC) gene. We have shown that wild-type (but not mutated) CIC FOXA site cloned in front of the luciferase promoter confers transcriptional activation of the gene reporter, particularly in cells overexpressing FOXA1. We have also demonstrated that overexpression and silencing of FOXA increases and reduces CIC transcript and protein levels, respectively. In addition, FOXA1 silencing in INS-1 cells decreases not only CIC mRNA and protein but also the amount of citrate in the cytosol and glucose-stimulated insulin secretion. These results show that FOXA plays a role in the transcriptional regulation of CIC and in insulin secretion.


Assuntos
Proteínas de Transporte de Ânions/genética , Regulação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Mitocondriais/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Humanos , Secreção de Insulina , Transportadores de Ânions Orgânicos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa