Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885906

RESUMO

The ethanolic extracts of three Equisetum species (E. pratense Ehrh., E. sylvaticum L. and E. telmateia Ehrh.) were used to reduce silver ions to silver nanoparticles (AgNPs). The synthesized AgNPs were characterized using UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) measurements. FTIR data revealed the functional groups of biomolecules involved in AgNPs synthesis, such as O-H, C-H, C=O, C-O, and C-C. EDX spectroscopy was used to highlight the presence of silver, while DLS spectroscopy provided information on the mean diameter of AgNPs, that ranged from 74.4 to 314 nm. The negative Zeta potential values (-23.76 for Ep-AgNPs, -29.54 for Es-AgNPs and -20.72 for Et-AgNPs) indicate the stability of the obtained colloidal solution. The study also focused on establishing the photocatalytic activity of AgNPs, which is an important aspect in terms of removing organic dyes from the environment. The best photocatalytic activity was observed for AgNPs obtained from E. telmateia, which degraded malachite green in a proportion of 97.9%. The antioxidant action of the three AgNPs samples was highlighted comparatively through four tests, with the best overall antioxidant capacity being observed for AgNPs obtained using E. sylvaticum. Moreover, the biosynthesized AgNPs showed promising cytotoxic efficacy against cancerous cell line MG63, the AgNPs obtained from E. sylvaticum L. providing the best result, with a LD50 value around 1.5 mg/mL.


Assuntos
Antineoplásicos/química , Antioxidantes/química , Nanopartículas Metálicas/química , Prata/química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Catálise , Linhagem Celular Tumoral , Equisetum/química , Química Verde , Humanos , Neoplasias/tratamento farmacológico , Prata/farmacologia
2.
Heliyon ; 10(4): e26047, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384565

RESUMO

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.

3.
Eur J Med Chem ; 244: 114811, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208508

RESUMO

Solid tumors are mainly characterized by a specific hypoxic microenvironment which makes them particularly challenging to treat. The Carbonic Anhydrase IX (CA IX) is one of the major enzymes implicated in the regulation and maintaining of such conditions and therefore its targeting represents a winning approach in recent tumor targeted therapy. In our search for an innovative combination therapy, we attained the synthesis of selective CA IX inhibitors which are also used for cell specific delivery of cytotoxic organotellurium scaffolds. We investigated compounds 5b, 7b and 7c for their redox properties by means of radical species scavenging and lipid peroxidation inhibitory capacity, as well as intracellular (reactive oxygen species) ROS production in both normal and cancer cell lines. Subsequently, compounds were evaluated as possible free radical generators by ESR spectrometry showing to cause or promote the formation of free radicals. These results accounted for a novel, potent, and selective CA IX inhibitor (i.e. 7c, Ki = 32 nM) with high cytotoxic effect against malignant melanoma (MeWo) and hepatocellular carcinoma (HepG2) cells over normal fibroblasts (NHDF) through ROS-independent mechanisms. The preliminary data gives support to employ organotellurium moieties as useful pharmacological tools for further development in the oncological field.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Neoplasias , Humanos , Inibidores da Anidrase Carbônica/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Anidrases Carbônicas/metabolismo , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade , Anidrase Carbônica IX/metabolismo , Antígenos de Neoplasias/metabolismo , Neoplasias/patologia , Antineoplásicos/química , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa