Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 337(6100): 1360-1364, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22984074

RESUMO

The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA-directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.


Assuntos
Arabidopsis/genética , Metilação de DNA , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Células Germinativas Vegetais/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Endosperma/citologia , Endosperma/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , RNA de Plantas/metabolismo , Transativadores/genética , Transativadores/metabolismo
2.
Science ; 324(5933): 1451-4, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19520962

RESUMO

Parent-of-origin-specific (imprinted) gene expression is regulated in Arabidopsis thaliana endosperm by cytosine demethylation of the maternal genome mediated by the DNA glycosylase DEMETER, but the extent of the methylation changes is not known. Here, we show that virtually the entire endosperm genome is demethylated, coupled with extensive local non-CG hypermethylation of small interfering RNA-targeted sequences. Mutation of DEMETER partially restores endosperm CG methylation to levels found in other tissues, indicating that CG demethylation is specific to maternal sequences. Endosperm demethylation is accompanied by CHH hypermethylation of embryo transposable elements. Our findings demonstrate extensive reconfiguration of the endosperm methylation landscape that likely reinforces transposon silencing in the embryo.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Metilação de DNA , Elementos de DNA Transponíveis , Genoma de Planta , Impressão Genômica , Sementes/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sequências Repetitivas de Ácido Nucleico , Sementes/crescimento & desenvolvimento , Transativadores/genética , Transativadores/metabolismo , Sítio de Iniciação de Transcrição
3.
Proc Natl Acad Sci U S A ; 101(13): 4441-6, 2004 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15070737

RESUMO

Potassium channels are widely distributed. To serve their physiological functions, such as neuronal signaling, control of insulin release, and regulation of heart rate and blood flow, it is essential that K+ channels allow K+ but not the smaller and more abundant Na+ ions to go through. The narrowest part of the channel pore, the selectivity filter formed by backbone carbonyls of the GYG-containing K+ channel signature sequence, approximates the hydration shell of K+ ions. However, the K+ channel signature sequence is not sufficient for K+ selectivity. To identify structural elements important for K+ selectivity, we randomly mutagenized the G protein-coupled inwardly rectifying potassium channel 3.2 (GIRK2) bearing the S177W mutation on the second transmembrane segment. This mutation confers constitutive channel activity but abolishes K+ selectivity and hence the channel's ability to complement the K+ transport deficiency of Deltatrk1Deltatrk2 mutant yeast. S177W-containing GIRK2 mutants that support yeast growth in low-K+ medium contain multiple suppressors, each partially restoring K+ selectivity to S177W-containing double mutants. These suppressors include mutations in the first transmembrane segment and the pore helix, likely exerting long-range actions to restore K+ selectivity, as well as a mutation of a second transmembrane segment residue facing the cytoplasmic half of the pore, below the selectivity filter. Some of these suppressors also affected channel gating (channel open time and opening frequency determined in single-channel analyses), revealing intriguing interplay between ion permeation and channel gating.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio , Substituição de Aminoácidos , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/química , Canais de Potássio/fisiologia , Conformação Proteica , Estrutura Secundária de Proteína , Mapeamento por Restrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa