Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1387532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784224

RESUMO

Introduction: Rheumatoid arthritis (RA) is commonly characterized by joint space narrowing. High-resolution peripheral quantitative computed tomography (HR-pQCT) provides unparalleled in vivo visualization and quantification of joint space in extremity joints commonly affected by RA, such as the 2nd and 3rd metacarpophalangeal joints. However, age, sex, and obesity can also influence joint space narrowing. Thus, this study aimed to determine whether HR-pQCT joint space metrics could distinguish between RA patients and controls, and determine the effects of age, sex and body mass index (BMI) on these joint space metrics. Methods: HR-pQCT joint space metrics (volume, width, standard deviation of width, maximum/minimum width, and asymmetry) were acquired from RA patients and age-and sex-matched healthy control participants 2nd and 3rd MCP joints. Joint health and functionality were assessed with ultrasound (i.e., effusion and inflammation), hand function tests, and questionnaires. Results: HR-pQCT-derived 3D joint space metrics were not significantly different between RA and control groups (p > 0.05), despite significant differences in inflammation and joint function (p < 0.05). Joint space volume, mean joint space width (JSW), maximum JSW, minimum JSW were larger in males than females (p < 0.05), while maximum JSW decreased with age. No significant association between joint space metrics and BMI were found. Conclusion: HR-pQCT did not detect group level differences between RA and age-and sex-matched controls. Further research is necessary to determine whether this is due to a true lack of group level differences due to well-controlled RA, or the inability of HR-pQCT to detect a difference.

2.
Front Chem ; 6: 250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018950

RESUMO

A simple hydrothermal route assisted by a triblock copolymer was used to synthesize Ag2O/Ag nanoparticles on a robotic support consists of functionalized MWCNTs and graphene composite (Ag2O/Ag/CNT-graphene). The composites together with the individual analog of Ag/CNT and Ag/graphene were characterized by means of XRD, TEM-SAED, N2 sorptiometry, Raman, FTIR, UV-Vis, and photoluminescence spectroscopy. These nanomaterials were then tested for the catalytic reduction of 4-nitrophenol (4-NP) to the technologically beneficial 4-aminophenol (4-AP). The Ag2O@Ag@CNT-graphene composite calcined at 400°C has shown fascinating reduction performances for 4-NP either in the dark (k = 0.014 s-1) or under visible light illumination (k = 0.039 s-1) in the presence of 5 mM NaBH4 compared to Ag/CNT (0.0112 s-1) and Ag/graphene (0.010 s-1) catalysts. This was chiefly because Ag2O@Ag@CNT-graphene comprises the highest pore volume (0.49 cm3/g) and involves three types of pores in the margin from 1.8 to 4.0 nm in front of only one modal type of pores for the rest of the catalysts and thus maximizes the adsorptive capacity of the reactants (4-NP and NaBH4). Moreover, the former composite exhibits the highest concentration of the Ag2O component as established by numerous techniques in addition to the cyclic voltammetry, proposing it's facile reaction with 4-NP along with the simultaneous transfer of surface hydrogen and electrons from NaBH4 ions to produce 4-AP. The promotion of the p-n junction evaluated using the Mott-schottky equation on Ag2O@Ag@CNT-graphene assisted by charges separation and surface plasmon resonance bands of Ag and Ag2O are found to be advantageous for 4-NP reduction. The latter composite delivers a specific capacitance of 355 F g-1 at 1.0 A g-1 exceeding those of Ag/CNT (230 F g-1) and Ag/graphene (185 F g-1). The EIS study establishes the high electronic conductivity of the metallic Ag and Ag2O moieties, low internal resistance of CNT-graphene as well as the marked ionic transfer facilitated by the composite porous nature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa