Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Nature ; 623(7989): 1079-1085, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938782

RESUMO

Decades of previous efforts to develop renal-sparing polyene antifungals were misguided by the classic membrane permeabilization model1. Recently, the clinically vital but also highly renal-toxic small-molecule natural product amphotericin B was instead found to kill fungi primarily by forming extramembraneous sponge-like aggregates that extract ergosterol from lipid bilayers2-6. Here we show that rapid and selective extraction of fungal ergosterol can yield potent and renal-sparing polyene antifungals. Cholesterol extraction was found to drive the toxicity of amphotericin B to human renal cells. Our examination of high-resolution structures of amphotericin B sponges in sterol-free and sterol-bound states guided us to a promising structural derivative that does not bind cholesterol and is thus renal sparing. This derivative was also less potent because it extracts ergosterol more slowly. Selective acceleration of ergosterol extraction with a second structural modification yielded a new polyene, AM-2-19, that is renal sparing in mice and primary human renal cells, potent against hundreds of pathogenic fungal strains, resistance evasive following serial passage in vitro and highly efficacious in animal models of invasive fungal infections. Thus, rational tuning of the dynamics of interactions between small molecules may lead to better treatments for fungal infections that still kill millions of people annually7,8 and potentially other resistance-evasive antimicrobials, including those that have recently been shown to operate through supramolecular structures that target specific lipids9.


Assuntos
Antifúngicos , Rim , Polienos , Esteróis , Animais , Humanos , Camundongos , Anfotericina B/análogos & derivados , Anfotericina B/química , Anfotericina B/toxicidade , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/toxicidade , Células Cultivadas , Colesterol/química , Colesterol/metabolismo , Farmacorresistência Fúngica , Ergosterol/química , Ergosterol/metabolismo , Rim/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Micoses/microbiologia , Polienos/química , Polienos/metabolismo , Polienos/farmacologia , Inoculações Seriadas , Esteróis/química , Esteróis/metabolismo , Fatores de Tempo
2.
Nature ; 596(7870): 114-118, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34262174

RESUMO

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Assuntos
Imunidade Adaptativa , Candida albicans/imunologia , Candida albicans/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Simbiose/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Fungos/imunologia , Candida albicans/patogenicidade , Colite/imunologia , Colite/microbiologia , Colite/patologia , Feminino , Vacinas Fúngicas/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Hifas/imunologia , Imunoglobulina A/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
3.
PLoS Pathog ; 19(8): e1011579, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37611070

RESUMO

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.


Assuntos
Candida albicans , Candidíase Bucal , Animais , Camundongos , Membrana Celular , Receptores ErbB , Caderinas , Células Epiteliais
4.
PLoS Biol ; 20(8): e3001762, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35976859

RESUMO

Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.


Assuntos
Candidíase , Nanopartículas , Animais , Antifúngicos/farmacologia , Biofilmes , Candida , Candida albicans , Candidíase/microbiologia , Fluconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Niclosamida/farmacologia , Niclosamida/uso terapêutico
5.
Antimicrob Agents Chemother ; 68(5): e0154523, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557112

RESUMO

Ibrexafungerp (formerly SCY-078) is the first member of the triterpenoid class that prevents the synthesis of the fungal cell wall polymer ß-(1,3)-D-glucan by inhibiting the enzyme glucan synthase. We evaluated the in vivo efficacy of ibrexafungerp against pulmonary mucormycosis using an established murine model. Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with placebo (diluent control), ibrexafungerp (30 mg/kg, PO BID), liposomal amphotericin B (LAMB 10 mg/kg IV QD), posaconazole (PSC 30 mg/kg PO QD), or a combination of ibrexafungerp plus LAMB or ibrexafungerp plus PSC began 16 h post-infection and continued for 7 days for ibrexafungerp or PSC and through day 4 for LAMB. Ibrexafungerp was as effective as LAMB or PSC in prolonging median survival (range: 15 days to >21 days) and enhancing overall survival (30%-65%) vs placebo (9 days and 0%; P < 0.001) in mice infected with R. delemar. Furthermore, median survival and overall percent survival resulting from the combination of ibrexafungerp plus LAMB were significantly greater compared to all monotherapies (P ≤ 0.03). Similar survival results were observed in mice infected with M. circinelloides. Monotherapies also reduce the lung and brain fungal burden by ~0.5-1.0log10 conidial equivalents (CE)/g of tissue vs placebo in mice infected with R. delemar (P < 0.05), while a combination of ibrexafungerp plus LAMB lowered the fungal burden by ~0.5-1.5log10 CE/g compared to placebo or any of the monotherapy groups (P < 0.03). These results are promising and warrant continued investigation of ibrexafungerp as a novel treatment option against mucormycosis.


Assuntos
Anfotericina B , Antifúngicos , Glicosídeos , Mucormicose , Neutropenia , Triterpenos , Animais , Anfotericina B/uso terapêutico , Anfotericina B/farmacologia , Mucormicose/tratamento farmacológico , Camundongos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Neutropenia/tratamento farmacológico , Neutropenia/complicações , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Rhizopus/efeitos dos fármacos , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/microbiologia , Mucor/efeitos dos fármacos , Triazóis/uso terapêutico , Triazóis/farmacologia
6.
Antimicrob Agents Chemother ; : e0154023, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687015

RESUMO

Invasive mucormycosis (IM) is associated with high mortality and morbidity. MAT2203 is an orally administered lipid nanocrystal formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to Rhizopus arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. In R. arrhizus var. delemar-infected mice, 15 mg/kg of MAT2203 qd was as effective as 10 mg/kg of LAMB in prolonging median survival time vs placebo (13.5 and 16.5 days for MAT2203 and LAMB, respectively, vs 9 days for placebo) and enhancing overall survival vs placebo-treated mice (40% and 45% for MAT2203 and LAMB, respectively, vs 0% for placebo). A higher dose of 45 mg/kg of MAT2203 was not well tolerated by mice and showed no benefit over placebo. Similar results were obtained with mice infected with M. circinelloides. Furthermore, while both MAT2203 and LAMB treatment resulted in a significant reduction of ~1.0-2.0log and ~2.0-2.5log in Rhizopus delemar or M. circinelloides lung and brain burden vs placebo mice, respectively, LAMB significantly reduced tissue fungal burden in mice infected with R. delemar vs tissues of mice treated with MAT2203. These results support continued investigation and development of MAT2203 as a novel and oral formulation of amphotericin for the treatment of mucormycosis.

7.
PLoS Pathog ; 18(7): e1010681, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797411

RESUMO

During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.


Assuntos
Candidíase , Células Endoteliais , Animais , Candida , Candida albicans , Candidíase/microbiologia , Células Endoteliais/microbiologia , Humanos , Camundongos , Vitronectina
8.
PLoS Biol ; 19(3): e3000957, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720927

RESUMO

A forward genetic screening approach identified orf19.2500 as a gene controlling Candida albicans biofilm dispersal and biofilm detachment. Three-dimensional (3D) protein modeling and bioinformatics revealed that orf19.2500 is a conserved mitochondrial protein, structurally similar to, but functionally diverged from, the squalene/phytoene synthases family. The C. albicans orf19.2500 is distinguished by 3 evolutionarily acquired stretches of amino acid inserts, absent from all other eukaryotes except a small number of ascomycete fungi. Biochemical assays showed that orf19.2500 is required for the assembly and activity of the NADH ubiquinone oxidoreductase Complex I (CI) of the respiratory electron transport chain (ETC) and was thereby named NDU1. NDU1 is essential for respiration and growth on alternative carbon sources, important for immune evasion, required for virulence in a mouse model of hematogenously disseminated candidiasis, and for potentiating resistance to antifungal drugs. Our study is the first report on a protein that sets the Candida-like fungi phylogenetically apart from all other eukaryotes, based solely on evolutionary "gain" of new amino acid inserts that are also the functional hub of the protein.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Proteínas Mitocondriais/genética , Candida albicans/crescimento & desenvolvimento , Biologia Computacional/métodos , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Mitocondriais/genética , Genes Mitocondriais/fisiologia , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Filogenia , Virulência/genética
9.
Eur J Pediatr ; 183(6): 2597-2603, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488876

RESUMO

This study aimed to evaluate TFC by EC versus lung ultrasound (LUS) findings for diagnosing and follow-up of TTN in late preterm and term neonates. This prospective observational study was conducted on 80 neonates with gestational age ≥ 34 weeks. TTN group included 40 neonates diagnosed with TTN, and no lung disease (NLD) group included 40 neonates without respiratory distress. LUS and EC were performed within the first 24 h of life and repeated after 72 h. There was a statistically significant increase in TFC in TTN group on D1 [48.48 ± 4.86 (1 KOhm-1)] compared to NLD group [32.95 ± 4.59 (1 KOhm-1)], and then significant decrease in TFC in D3 [34.90 ± 4.42 (1 KOhm-1)] compared to D1 in the TTN group. There was a significant positive correlation between both TFC and LUS with Downes' score, TTN score, and duration of oxygen therapy in the TTN group.   Conclusion: Both LUS and TFC by EC provide good bedside tools that could help to diagnose and monitor TTN. TFC showed a good correlation with LUS score and degree of respiratory distress. What is Known: • Transient tachypnea of the newborn (TTN) is the most common cause of respiratory distress in newborns. • TTN is a diagnosis of exclusion, there are no specific clinical parameters or biomarker has been identified for TTN. What is New: • Thoracic fluid content (TFC) by electrical cardiometry is a new parameter to evaluate lung fluid volume and could help to diagnose and monitor TTN and correlates with lung ultrasound score.


Assuntos
Pulmão , Taquipneia Transitória do Recém-Nascido , Ultrassonografia , Humanos , Taquipneia Transitória do Recém-Nascido/diagnóstico por imagem , Recém-Nascido , Estudos Prospectivos , Masculino , Feminino , Ultrassonografia/métodos , Pulmão/diagnóstico por imagem , Cardiografia de Impedância/métodos , Recém-Nascido Prematuro
10.
Cell Mol Biol (Noisy-le-grand) ; 69(1): 145-149, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37213141

RESUMO

A total of 100 samples collected from the wound, abscess skin, and normal human flora were investigated for S. aureus identification. Overall, in 40 samples, S. aureus isolates were present, out of which most strains were isolated from normal human flora (50.0%), followed by wound (37.5%) and burn (12.5%) samples. Moreover, S. aureus isolates from all samples could produce extracellular enzymes (catalase, coagulase, urease, and hemolysin-ß) as virulence factors except for some isolates from normal flora samples (unable to produce coagulase enzymes). Therefore, genes encoding the enzymes coagulase and hemolysin were evaluated in 20 S. aureus isolates by PCR-specialized primers targeting co-specific genes. The PCR analysis revealed that clinical isolates included both genes. Contrarily, 6 isolates of the normal flora lacked the coa gene, revealing bacterial fingerprints that can be used to distinguish between isolated bacteria and human beings.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Coagulase/genética , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Infecções Estafilocócicas/microbiologia , Antibacterianos , Testes de Sensibilidade Microbiana
11.
Mycopathologia ; 188(5): 783-792, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672164

RESUMO

BACKGROUND: Despite the unprecedented surge in the incidence of mucormycosis in the COVID-19 era, the antifungal susceptibility patterns (ASPs) of COVID-19 associated mucormycosis (CAM) isolates have not been investigated so far and it is unclear if the high mortality rate associated with CAM is driven by decreased susceptibility of Mucorales to antifungal drugs. OBJECTIVES: To describe the clinical, mycological, outcome and in vitro ASPs of CAM cases and their etiologies from Iran. PATIENTS/METHODS: A prospective study from January 2020 to January 2022 at a referral tertiary hospital in Tehran, Iran was conducted for screening mucormycosis through histopathology and mycological methods. The identity of Mucorales isolates was revealed with ITS-panfungal PCR& sequencing and MALDI-TOF. The AS for amphotericin B, itraconazole, isavuconazole and posaconazole was cleared according to the EUCAST antifungal susceptibility testing protocol. RESULT: A total of 150 individuals were diagnosed with CAM. Males constituted 60.7% of the population. The mean age was 54.9 years. Diabetes was the leading risk factor (74.7%). The median interval between diagnosis of COVID-19 and CAM was 31 days. The recovery rate of culture was as low as 41.3% with Rhizopus arrhizus being identified as the dominant (60; 96.7%) agent. Amphotericin B (MIC50 = 0.5 µg/ml) demonstrated the highest potency against Mucorales. CONCLUSION: Majority of the cases had either diabetes, history of corticosteroid therapy or simultaneously both conditions. Accordingly, close monitoring of blood glucose should be considered. The indications for corticosteroids therapy are recommended to be optimized. Also, an anti Mucorales prophylaxis may be necessitated to be administrated in high risk individuals. Although amphotericin B was the most active agent, a higher rate of resistance to this antifungal was noted here in comparison with earlier studies on mucormycetes from non-CAM cases.


Assuntos
COVID-19 , Diabetes Mellitus , Mucorales , Mucormicose , Masculino , Humanos , Pessoa de Meia-Idade , Mucormicose/diagnóstico , Mucormicose/tratamento farmacológico , Mucormicose/epidemiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Centros de Atenção Terciária , Irã (Geográfico)/epidemiologia , Estudos Prospectivos , Diabetes Mellitus/tratamento farmacológico
12.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37300067

RESUMO

Network function virtualization (NFV) is a rapidly growing technology that enables the virtualization of traditional network hardware components, offering benefits such as cost reduction, increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor and IoT networks by ensuring optimal resource usage and effective network management. However, adopting NFV in these networks also brings security challenges that must promptly and effectively address. This survey paper focuses on exploring the security challenges associated with NFV. It proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-based algorithms for detecting network-based anomalies in NFV networks. By providing insights into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this study aims to assist network administrators and security professionals in enhancing the security of NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.


Assuntos
Algoritmos , Aprendizado de Máquina , Resolução de Problemas , Tecnologia
13.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904866

RESUMO

Wireless Local Area Networks (WLANs) have become an increasingly popular mode of communication and networking, with a wide range of applications in various fields. However, the increasing popularity of WLANs has also led to an increase in security threats, including denial of service (DoS) attacks. In this study, management-frames-based DoS attacks, in which the attacker floods the network with management frames, are particularly concerning as they can cause widespread disruptions in the network. Attacks known as denial of service (DoS) can target wireless LANs. None of the wireless security mechanisms in use today contemplate defence against them. At the MAC layer, there are multiple vulnerabilities that can be exploited to launch DoS attacks. This paper focuses on designing and developing an artificial neural network (NN) scheme for detecting management-frames-based DoS attacks. The proposed scheme aims to effectively detect fake de-authentication/disassociation frames and improve network performance by avoiding communication interruption caused by such attacks. The proposed NN scheme leverages machine learning techniques to analyse patterns and features in the management frames exchanged between wireless devices. By training the NN, the system can learn to accurately detect potential DoS attacks. This approach offers a more sophisticated and effective solution to the problem of DoS attacks in wireless LANs and has the potential to significantly enhance the security and reliability of these networks. According to the experimental results, the proposed technique exhibits higher effectiveness in detection compared to existing methods, as evidenced by a significantly increased true positive rate and a decreased false positive rate.

14.
Antimicrob Agents Chemother ; 66(7): e0038022, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35670592

RESUMO

Invasive pulmonary aspergillosis (IPA), invasive mucormycosis (IM), and invasive fusariosis (IF) are associated with high mortality and morbidity. Fosmanogepix (FMGX) is a first-in-class antifungal in clinical development with demonstrated broad-spectrum activity in animal models of infections. We sought to evaluate the benefit of combination therapy of FMGX plus liposomal amphotericin B (L-AMB) in severe delayed-treatment models of murine IPA, IM, and IF. While FMGX was equally as effective as L-AMB in prolonging the survival of mice infected with IPA, IM, or IF, combination therapy was superior to monotherapy in all three models. These findings were validated by greater reductions in the tissue fungal burdens (determined by quantitative PCR) of target organs in all three models versus the burdens in infected vehicle-treated (placebo) or monotherapy-treated mice. In general, histopathological examination of target organs corroborated the findings for fungal tissue burdens among all treatment arms. Our results show that treatment with the combination of FMGX plus L-AMB demonstrated high survival rates and fungal burden reductions in severe animal models of invasive mold infections, at drug exposures in mice similar to those achieved clinically. These encouraging results warrant further investigation of the FMGX-plus-L-AMB combination treatment for severely ill patients with IPA, IM, and IF.


Assuntos
Fusariose , Aspergilose Pulmonar Invasiva , Mucormicose , Anfotericina B/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Fungos , Fusariose/tratamento farmacológico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Camundongos , Mucormicose/tratamento farmacológico
15.
Pediatr Blood Cancer ; 69(7): e29496, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34842343

RESUMO

OBJECTIVES: Omega 3 polyunsaturated fatty acids are dietary factors with several beneficial cardiovascular effects. This study aimed to assess the possible protective effect of omega 3 fatty acids on early doxorubicin-induced cardiac toxicity in children with acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS: Sixty children of newly diagnosed ALL were randomized into two groups: group I (n = 30) who received omega 3 fatty acids 1000 mg/day for 6 months in addition to their usual protocol of chemotherapy including doxorubicin; and group II (n = 30) who received their usual doxorubicin protocol during the period from February 2020 till August 2021. Echocardiographic examinations were performed before and after the treatment. Glutathione, malondialdehyde (MDA), superoxide dismutase (SOD), troponin I, creatine kinase MB (CK-MB), and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured also before and after omega 3 treatment. RESULTS: After 6 months of omega 3 administration, group I had a significantly lower MDA level and a significantly higher glutathione and SOD levels than group II. Similarly, the levels of troponin I, CK-MB, and NT-proBNP were significantly high in group II, whereas they were unchanged in group I after treatment. Similarly, systolic function (presented with peak mitral annular systolic velocity and two-dimensional global longitudinal strain) of the heart was preserved in omega 3-treated patients, unlike the control group that showed significant impairment of left ventricular function after 6 months. CONCLUSION: Omega 3 fatty acids may decrease early cardiac injury and doxorubicin-induced cardiotoxicity in children with ALL.


Assuntos
Ácidos Graxos Ômega-3 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Criança , Doxorrubicina/efeitos adversos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Glutationa/uso terapêutico , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Superóxido Dismutase/uso terapêutico , Troponina I
16.
Sensors (Basel) ; 22(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146400

RESUMO

In IoT networks, the de facto Routing Protocol for Low Power and Lossy Networks (RPL) is vulnerable to various attacks. Routing attacks in RPL-based IoT are becoming critical with the increase in the number of IoT applications and devices globally. To address routing attacks in RPL-based IoT, several security solutions have been proposed in literature, such as machine learning techniques, intrusion detection systems, and trust-based approaches. Studies show that trust-based security for IoT is feasible due to its simple integration and resource-constrained nature of smart devices. Existing trust-based solutions have insufficient consideration of nodes' mobility and are not evaluated for dynamic scenarios to satisfy the requirements of smart applications. This research work addresses the Rank and Blackhole attacks in RPL considering the static as well as mobile nodes in IoT. The proposed Security, Mobility, and Trust-based model (SMTrust) relies on carefully chosen trust factors and metrics, including mobility-based metrics. The evaluation of the proposed model through simulation experiments shows that SMTrust performs better than the existing trust-based methods for securing RPL. The improvisation in terms of topology stability is 46%, reduction in packet loss rate is 45%, and 35% increase in throughput, with only 2.3% increase in average power consumption.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33722886

RESUMO

We evaluated the in vitro activity of manogepix against Fusarium oxysporum and Fusarium solani species complex (FOSC and FSSC, respectively) isolates per CLSI document M38 broth microdilution methods. Manogepix demonstrated activity against both FOSC (MEC [minimum effective concentration] range, ≤0.015 to 0.03 µg/ml; MIC50 range, ≤0.015 to 0.125 µg/ml) and FSSC (MEC, ≤0.015 µg/ml; MIC50, ≤0.015 to 0.25 µg/ml). Amphotericin B was also active (MIC, 0.25 to 4 µg/ml), whereas the triazoles (MIC, 1 to >16 µg/ml) and micafungin (MEC, ≥8 µg/ml) had limited activity.


Assuntos
Fusarium , Aminopiridinas , Antifúngicos/farmacologia , Isoxazóis , Testes de Sensibilidade Microbiana
18.
J Antimicrob Chemother ; 76(10): 2636-2639, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263306

RESUMO

OBJECTIVES: Liposomal amphotericin B (L-AMB) and isavuconazonium sulphate are commonly used antifungal drugs to treat mucormycosis. However, the efficacy of combination therapy of L-AMB/isavuconazonium sulphate versus monotherapy is unknown. We used an immunosuppressed mouse model of pulmonary mucormycosis to compare the efficacy of L-AMB/isavuconazonium sulphate versus either drug alone. METHODS: Neutropenic mice were intratracheally infected with either Rhizopus delemar or Mucor circinelloides. Treatment with L-AMB, isavuconazonium sulphate, or a combination of both started 8 h post-infection and continued through to Day +4. Placebo mice received vehicle control. Survival to Day +21 and tissue fungal burden (by conidial equivalent using quantitative PCR) on Day +4, served as primary and secondary endpoints, respectively. RESULTS: For mice infected with R. delemar, L-AMB and isavuconazonium sulphate equally prolonged median survival time and enhanced survival versus placebo (an overall survival of 50% for either drug alone, versus 5% for placebo). Importantly, combination treatment resulted in an overall survival of 80%. Both antifungal drugs reduced tissue fungal burden of lungs and brain by ∼1.0-2.0 log versus placebo-treated mice. Treatment with combination therapy resulted in 2.0-3.5 log reduction in fungal burden of either organ versus placebo and 1.0 log reduction versus either drug alone. Similar treatment outcomes were obtained using mice infected with M. circinelloides. CONCLUSIONS: The L-AMB/isavuconazonium sulphate combination demonstrated greater activity versus monotherapy in immunosuppressed mice infected with either of the two most common causes of mucormycosis. These studies warrant further investigation of L-AMB/isavuconazonium sulphate combination therapy as an optimal therapy of human mucormycosis.


Assuntos
Mucormicose , Anfotericina B , Animais , Antifúngicos/uso terapêutico , Camundongos , Mucor , Mucormicose/tratamento farmacológico , Nitrilas , Piridinas , Rhizopus , Triazóis
19.
PLoS Pathog ; 15(8): e1007460, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381597

RESUMO

Candida auris is an emerging, multi-drug resistant, health care-associated fungal pathogen. Its predominant prevalence in hospitals and nursing homes indicates its ability to adhere to and colonize the skin, or persist in an environment outside the host-a trait unique from other Candida species. Besides being associated globally with life-threatening disseminated infections, C. auris also poses significant clinical challenges due to its ability to adhere to polymeric surfaces and form highly drug-resistant biofilms. Here, we performed bioinformatic studies to identify the presence of adhesin proteins in C. auris, with sequence as well as 3-D structural homologies to the major adhesin/invasin of C. albicans, Als3. Anti-Als3p antibodies generated by vaccinating mice with NDV-3A (a vaccine based on the N-terminus of Als3 protein formulated with alum) recognized C. auris in vitro, blocked its ability to form biofilms and enhanced macrophage-mediated killing of the fungus. Furthermore, NDV-3A vaccination induced significant levels of C. auris cross-reactive humoral and cellular immune responses, and protected immunosuppressed mice from lethal C. auris disseminated infection, compared to the control alum-vaccinated mice. The mechanism of protection is attributed to anti-Als3p antibodies and CD4+ T helper cells activating tissue macrophages. Finally, NDV-3A potentiated the protective efficacy of the antifungal drug micafungin, against C. auris candidemia. Identification of Als3-like adhesins in C. auris makes it a target for immunotherapeutic strategies using NDV-3A, a vaccine with known efficacy against other Candida species and safety as well as efficacy in clinical trials. Considering that C. auris can be resistant to almost all classes of antifungal drugs, such an approach has profound clinical relevance.


Assuntos
Biofilmes/crescimento & desenvolvimento , Linfócitos T CD4-Positivos/imunologia , Candida/imunologia , Candidíase/prevenção & controle , Resistência a Múltiplos Medicamentos/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/administração & dosagem , Compostos de Alúmen/química , Animais , Candidíase/imunologia , Candidíase/microbiologia , Camundongos , Camundongos Endogâmicos ICR , Vacinação
20.
Biochem J ; 477(13): 2489-2507, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32538426

RESUMO

Melanin is a dark color pigment biosynthesized naturally in most living organisms. Fungal melanin is a major putative virulence factor of Mucorales fungi that allows intracellular persistence by inducing phagosome maturation arrest. Recently, it has been shown that the black pigments of Rhizopus delemar is of eumelanin type, that requires the involvement of tyrosinase (a copper-dependent enzyme) in its biosynthesis. Herein, we have developed a series of compounds (UOSC-1-14) to selectively target Rhizopus melanin and explored this mechanism therapeutically. The compounds were designed based on the scaffold of the natural product, cuminaldehyde, identified from plant sources and has been shown to develop non-selective inhibition of melanin production. While all synthesized compounds showed significant inhibition of Rhizopus melanin production and limited toxicity to mammalian cells, only four compounds (UOSC-1, 2, 13, and 14) were selected as promising candidates based on their selective inhibition to fungal melanin. The activity of compound UOSC-2 was comparable to the positive control kojic acid. The selected candidates showed significant inhibition of Rhizopus melanin but not human melanin by targeting the fungal tyrosinase, and with an IC50 that are 9 times lower than the reference standard, kojic acid. Furthermore, the produced white spores were phagocytized easily and cleared faster from the lungs of infected immunocompetent mice and from the human macrophages when compared with wild-type spores. Collectively, the results suggested that the newly designed derivatives, particularly UOSC-2 can serve as promising candidate to overcome persistence mechanisms of fungal melanin production and hence make them accessible to host defenses.


Assuntos
Produtos Biológicos/metabolismo , Melaninas/biossíntese , Rhizopus/química , Ativação Enzimática/efeitos dos fármacos , Humanos , Melaninas/metabolismo , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Fagocitose/fisiologia , Pironas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa