Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Autoimmun ; 135: 102983, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640636

RESUMO

Myasthenia gravis (MG) is a debilitating autoimmune disease characterized by muscle fatigue and weakness caused by autoantibody- and complement-mediated damage to the neuromuscular junction. This study sought to compare the efficacy of unique sets of monoclonal antibody-siRNA conjugates, individually (mono) or in combination (duo), against the crucial receptors predominantly or solely expressed on two subsets of B cells-plasma B cells and their precursor (transitional mature B) cells in a mouse model of MG. At the optimized doses, the conjugates, likely due to the combined activities of mAb and siRNA, substantially decreased the expression levels of CD268 (B cell-activating factor receptor) in mature B cells and CD269 (B-cell maturation antigen) in plasma cells concomitantly with reducing the levels of acetylcholine receptor (AChR)-specific autoantibodies. PEGylation, but not pretreatment with an antibody against type 1 interferon receptor, further improved duoconjugate-induced reduction in the autoantibody levels. Our results show that the duoconjugate treatment significantly improved the clinical symptoms of MG, consistent with the preservation of bungarotoxin-bound functional AChRs. In the future, developing similar target-specific combination molecules can potentially turn into a new and effective therapeutic approach for MG.


Assuntos
Miastenia Gravis Autoimune Experimental , Camundongos , Animais , RNA Interferente Pequeno , Receptores Colinérgicos , Anticorpos Monoclonais , Autoanticorpos
2.
Clin Immunol ; 176: 122-130, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28099879

RESUMO

We investigated potential therapeutic effects of a conjugate of BAFF receptor specific-monoclonal antibody and short interference RNA in a mouse model of myasthenia gravis (EAMG). Whereas high-dose siRNA conjugate resulted in significant accumulation of Fas expressing CD19+/B220+ cells and concurrent expression of type 1 interferon in lymph nodes, low-dose conjugate did not induce FAS expression but caused marked BAFF receptor deficiency in lymph nodes that was further associated with improved MG symptoms. Unexpectedly, despite inhibiting BAFF receptor significantly in PBMCs and secondary lymphoid organs, conjugate treatment did not reduce the levels of autoantibody. Rather, at high dose, it caused robust increase in high affinity anti-AChR antibody and increased levels of serum IL10 and IL-4 cytokines. Our findings reveal a previously undocumented, dose dependent, immunomodulatory distant effect resulting from BAFF receptor specific mAb-siRNA conjugate treatment in an in vivo model of autoimmune disease.


Assuntos
Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Receptor do Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Linfonodos/imunologia , Miastenia Gravis/imunologia , RNA Interferente Pequeno/imunologia , Receptor fas/imunologia , Animais , Antígenos CD19/imunologia , Autoanticorpos/sangue , Linhagem Celular , Modelos Animais de Doenças , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Antígenos Comuns de Leucócito/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Miastenia Gravis/sangue , Ratos , Receptores Colinérgicos/imunologia
3.
Front Neurol ; 12: 804113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222229

RESUMO

Myasthenia gravis (MG) is an autoimmune disease characterized by chronic muscle fatigue and weakness caused by autoantibodies and complement-mediated damage at neuromuscular junctions. Histone deacetylases (HDACs) are crucial epigenetic regulators of proinflammatory gene expression; however, it is unclear whether HDACs modulate chronic inflammation or autoantibody production associated with MG pathogenesis. We examined expression profiles and serum levels of key inflammatory cytokines (IL-6 and IL-21) and acetylcholine receptor (AChR)-specific autoantibodies following pharmacological inhibition of key HDAC isoforms in a mouse model of MG. We found that HDAC inhibition significantly reduced the production of IL-6, but not IL-21, in AChR-stimulated PBMCs and splenocytes (n = 5 per group). Trichostatin (pan-HDAC inhibitor) treatment of MG-PBMCs (n = 2) also exhibited reduced production of induced IL-6. Although HDAC1 inhibition lowered IL-6 levels the most, HDAC2 inhibition depleted intracellular IL-6 and markedly reduced serum anti-AChR IgG2b in EAMG mice. The transcriptomic profiling and pathway mapping also revealed that autoimmunity-linked, major cell signaling pathways were differentially altered by HDAC1/2 inhibition. HDAC inhibition-mediated reduction in IL-6 and autoantibody levels also correlated with milder disease and preservation of muscle AChR in the treated mice. Overall, our findings revealed isoform-specific functional variance of HDACs in reducing inflammation and identified HDAC-regulated many genes underlying specific inflammatory and autoantibody pathways in EAMG. Thus, the study provides a rationale for further research to evaluate the HDACs or their gene targets as a potential adjunct treatment for MG.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa