Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tohoku J Exp Med ; 254(3): 199-206, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34305101

RESUMO

Differentiating neutrophils based on the count of nuclear lobulation is useful for diagnosing various hematological disorders, including megaloblastic anemia, myelodysplastic syndrome, and sepsis. It has been reported that one-fifth of sepsis-infected patients worldwide died between 1990 and 2017. Notably, fewer nuclear-lobed and stab-formed neutrophils develop in the peripheral blood during sepsis. This abnormality can serve as an early diagnostic criterion. However, testing this feature is a complex and time-consuming task that is rife with human error. For this reason, we apply deep learning to automatically differentiate neutrophil and nuclear lobulation counts and report the world's first small-scale pilot. Blood films are prepared using venous peripheral blood taken from four healthy volunteers and are stained with May-Grünwald Giemsa stain. Six-hundred 360 × 363-pixel images of neutrophils having five different nuclear lobulations are automatically captured by Cellavision DM-96, an automatic digital microscope camera. Images are input to an original architecture with five convolutional layers built on a deep learning neural-network platform by Sony, Neural Network Console. The deep learning system distinguishes the four groups (i.e., band-formed, two-, three-, and four- and five- segmented) of neutrophils with up to 99% accuracy, suggesting that neutrophils can be automatically differentiated based on their count of segmented nuclei using deep learning.


Assuntos
Aprendizado Profundo , Sepse , Humanos , Redes Neurais de Computação , Neutrófilos
2.
Sci Rep ; 12(1): 16736, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202847

RESUMO

Differential bone marrow (BM) cell counting is an important test for the diagnosis of various hematological diseases. However, it is difficult to accurately classify BM cells due to non-uniformity and the lack of reproducibility of differential counting. Therefore, automatic classification systems have been developed in which deep learning is used. These systems requires large and accurately labeled datasets for training. To overcome this, we used semi-supervised learning (SSL), in which learning proceeds while labeling. We used three methods: self-training (ST), active learning (AL), and a combination of these methods, and attempted to automatically classify 16 types of BM cell images. ST involves data verification, as in AL, before adding them to the training dataset (confirmed self-training: CST). After 25 rounds of CST, AL, and CST + AL, the initial number of training data increased from 425 to 40,518; 3682; and 47,843, respectively. Accuracies for the test data of 50 images for each cell type were 0.944, 0.941, and 0.976, respectively. Data added with CST or AL showed some imbalances between classes, while CST + AL exhibited fewer imbalances. We suggest that CST + AL, when combined with two SSL methods, is efficient in increasing training data for the development of automatic BM cells classification systems.


Assuntos
Células da Medula Óssea , Aprendizado de Máquina Supervisionado , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa