Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(6): 2663-2689, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36097208

RESUMO

Several anthropogenic activities produce radioactive materials into the environment. According to reports, exposure to high concentrations of radioactive elements such as potassium (40K), uranium (238U and 235U), and thorium (232Th) poses serious health concerns. The scarcity of reviews addressing the occurrence/sources, distribution, and remedial solutions of radioactive contamination in the ecosystems has fueled data collection for this bibliometric survey. In rivers and potable water, reports show that several parts of Europe and Asia have recorded radionuclide concentrations much higher than the permissible level of 1 Bq/L. According to various investigations, activity concentrations of gamma-emitting radioactive elements discovered in soils are higher than the global average crustal values, especially around mining activities. Adsorption technique is the most prevalent remedial method for decontaminating radiochemically polluted sites. However, there is a need to investigate integrated approaches/combination techniques. Although complete radionuclide decontamination utilizing the various technologies is feasible, future research should focus on cost-effectiveness, waste minimization, sustainability, and rapid radionuclide decontamination. Radioactive materials can be harnessed as fuel for nuclear power generation to meet worldwide energy demand. However, proper infrastructure must be put in place to prevent catastrophic disasters.


Assuntos
Elementos Radioativos , Monitoramento de Radiação , Resíduos Radioativos , Poluentes Radioativos do Solo , Urânio , Resíduos Radioativos/prevenção & controle , Ecossistema , Radioisótopos/análise , Solo/química , Urânio/análise , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação/métodos
2.
Bioresour Bioprocess ; 8(1): 87, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38650274

RESUMO

Sugarcane (Saccharum officinarum) bagasse (SCB) is a biomass of agricultural waste obtained from sugarcane processing that has been found in abundance globally. Due to its abundance in nature, researchers have been harnessing this biomass for numerous applications such as in energy and environmental sustainability. However, before it could be optimally utilised, it has to be pre-treated using available methods. Different pre-treatment methods were reviewed for SCB, both alkaline and alkali-acid process reveal efficient and successful approaches for obtaining higher glucose production from hydrolysis. Procedures for hydrolysis were evaluated, and results indicate that pre-treated SCB was susceptible to acid and enzymatic hydrolysis as > 80% glucose yield was obtained in both cases. The SCB could achieve a bio-ethanol (a biofuel) yield of > 0.2 g/g at optimal conditions and xylitol (a bio-product) yield at > 0.4 g/g in most cases. Thermochemical processing of SCB also gave excellent biofuel yields. The plethora of products obtained in this regard have been catalogued and elucidated extensively. As found in this study, the SCB could be used in diverse applications such as adsorbent, ion exchange resin, briquettes, ceramics, concrete, cement and polymer composites. Consequently, the SCB is a biomass with great potential to meet global energy demand and encourage environmental sustainability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa