Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008826

RESUMO

The fabrication of collagen-based biomaterials for skin regeneration offers various challenges for tissue engineers. The purpose of this study was to obtain a novel series of composite biomaterials based on collagen and several types of clays. In order to investigate the influence of clay type on drug release behavior, the obtained collagen-based composite materials were further loaded with gentamicin. Physiochemical and biological analyses were performed to analyze the obtained nanocomposite materials after nanoclay embedding. Infrared spectra confirmed the inclusion of clay in the collagen polymeric matrix without any denaturation of triple helical conformation. All the composite samples revealed a slight change in the 2-theta values pointing toward a homogenous distribution of clay layers inside the collagen matrix with the obtaining of mainly intercalated collagen-clay structures, according X-ray diffraction analyses. The porosity of collagen/clay composite biomaterials varied depending on clay nanoparticles sort. Thermo-mechanical analyses indicated enhanced thermal and mechanical features for collagen composites as compared with neat type II collagen matrix. Biodegradation findings were supported by swelling studies, which indicated a more crosslinked structure due additional H bonding brought on by nanoclays. The biology tests demonstrated the influence of clay type on cellular viability but also on the antimicrobial behavior of composite scaffolds. All nanocomposite samples presented a delayed gentamicin release when compared with the collagen-gentamicin sample. The obtained results highlighted the importance of clay type selection as this affects the performances of the collagen-based composites as promising biomaterials for future applications in the biomedical field.


Assuntos
Materiais Biocompatíveis/química , Argila/química , Colágeno/química , Animais , Antibacterianos/farmacologia , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno/ultraestrutura , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Gentamicinas/farmacologia , Humanos , Teste de Materiais , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Estresse Mecânico , Termogravimetria , Difração de Raios X
2.
Int J Mol Sci ; 18(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28125053

RESUMO

TiO2-based photocatalysts were obtained during previous years in order to limit pollution and to ease human daily living conditions due to their special properties. However, obtaining biocompatible photocatalysts is still a key problem, and the mechanism of their toxicity recently received increased attention. Two types of TiO2 nanoparticles co-doped with 1% of iron and nitrogen (TiO2-1% Fe-N) atoms were synthesized in hydrothermal conditions at pH of 8.5 (HT1) and 5.5 (HT2), and their antimicrobial activity and cytotoxic effects exerted on human pulmonary and dermal fibroblasts were assessed. These particles exhibited significant microbicidal and anti-biofilm activity, suggesting their potential application for microbial decontamination of different environments. In addition, our results demonstrated the biocompatibility of TiO2-1% Fe-N nanoparticles at low doses on lung and dermal cells, which may initiate oxidative stress through dose accumulation. Although no significant changes were observed between the two tested photocatalysts, the biological response was cell type specific and time- and dose-dependent; the lung cells proved to be more sensitive to nanoparticle exposure. Taken together, these experimental data provide useful information for future photocatalytic applications in the industrial, food, pharmaceutical, and medical fields.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/microbiologia , Nanopartículas/química , Processos Fotoquímicos , Titânio/química , Citoesqueleto de Actina , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias , Catálise , Sobrevivência Celular/efeitos dos fármacos , Coloides , Humanos , Hidrodinâmica , Peroxidação de Lipídeos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Difração de Raios X
3.
Polymers (Basel) ; 16(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125163

RESUMO

This paper presents the development, characterization, and testing of PP/PE-g-MA composites with 10 and 15 wt% surface-modified aramid fibers, and aluminum-based pigment, as covers for a small drone body for collision protection. The successful fiber surface modification with SiO2 by the sol-gel method using TEOS was confirmed by FTIR, SEM, and EDS analyses. The composites were characterized by FTIR and SEM analyses and surface energy and water contact angle measurements and tested in terms of tensile, flexural, impact, and thermal properties. The materials exhibited hydrophobic character and compact and uniform morphostructures, with increased surface energy with fiber content owed to improved adhesion between modified fibers and the matrix. Compared to the control sample, composites with modified fibers showed an increase by 20% in tensile strength, and 36-52% in the modulus, and an increase by 26-33% in flexural strength and 30-47% in the modulus, with higher values at room temperature. Impact resistance of modified fiber composites showed an increase by 20-40% compared to the control sample, due to improved interaction between SiO2-modified fibers and maleic anhydride, which inhibits crack formation, allowing higher energies' absorption. The composites were vacuum-thermoformed on 3D-printed molds as a two-part cover for the body of a drone, successfully withstanding the flight test.

4.
Polymers (Basel) ; 13(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34960902

RESUMO

The leather industry is facing important environmental issues related to waste disposal. The waste generated during the tanning process is an important resource of protein (mainly collagen) which can be extracted and reused in different applications (e.g., medical, agricultural, leather industry). On the other side, the utilization of chemical fertilizers must be decreased because of the negative effects associated to an extensive use of conventional chemical fertilizers. This review presents current research trends, challenges and future perspectives with respect to the use of hide waste to produce composite polymers that are further transformed in smart fertilizers. Hide waste contains mostly protein (collagen that is a natural polymer), that is extracted to be used in the cross-linking with water soluble copolymers to obtain the hydrogels which are further valorised as smart fertilizers. Smart fertilizers are a new class of fertilizers which allow the controlled release of the nutrients in synchronization with the plant's demands. Characteristics of hide and leather wastes are pointed out. The fabrication methods of smart fertilizers and the mechanisms for the nutrients release are extensively discussed. This novel method is in agreement with the circular economy concepts and solves, on one side, the problem of hide waste disposal, and on the other side produces smart fertilizers that can successfully replace conventional chemical fertilizers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa