Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
EMBO J ; 41(15): e110271, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735140

RESUMO

Nuclear pore complexes (NPCs) mediate communication between the nucleus and the cytoplasm, and regulate gene expression by interacting with transcription and mRNA export factors. Lysine acetyltransferases (KATs) promote transcription through acetylation of chromatin-associated proteins. We find that Esa1, the KAT subunit of the yeast NuA4 complex, also acetylates the nuclear pore basket component Nup60 to promote mRNA export. Acetylation of Nup60 recruits the mRNA export factor Sac3, the scaffolding subunit of the Transcription and Export 2 (TREX-2) complex, to the nuclear basket. The Esa1-mediated nuclear export of mRNAs in turn promotes entry into S phase, which is inhibited by the Hos3 deacetylase in G1 daughter cells to restrain their premature commitment to a new cell division cycle. This mechanism is not only limited to G1/S-expressed genes but also inhibits the expression of the nutrient-regulated GAL1 gene specifically in daughter cells. Overall, these results reveal how acetylation can contribute to the functional plasticity of NPCs in mother and daughter yeast cells. In addition, our work demonstrates dual gene expression regulation by the evolutionarily conserved NuA4 complex, at the level of transcription and at the stage of mRNA export by modifying the nucleoplasmic entrance to nuclear pores.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Acetilação , Transporte Ativo do Núcleo Celular/fisiologia , Ciclo Celular , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
2.
EMBO Rep ; 25(2): 745-769, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233717

RESUMO

Pho85 is a multifunctional CDK that signals to the cell when environmental conditions are favorable. It has been connected to cell cycle control, mainly in Start where it promotes the G1/S transition. Here we describe that the Start repressor Whi7 is a key target of Pho85 in the regulation of cell cycle entry. The phosphorylation of Whi7 by Pho85 inhibits the repressor and explains most of the contribution of the CDK in the activation of Start. Mechanistically, Pho85 downregulates Whi7 protein levels through the control of Whi7 protein stability and WHI7 gene transcription. Whi7 phosphorylation by Pho85 also restrains the intrinsic ability of Whi7 to associate with promoters. Furthermore, although Whi5 is the main Start repressor in normal cycling cells, in the absence of Pho85, Whi7 becomes the major repressor leading to G1 arrest. Overall, our results reveal a novel mechanism by which Pho85 promotes Start through the regulation of the Whi7 repressor at multiple levels, which may confer to Whi7 a functional specialization to connect the response to adverse conditions with the cell cycle control.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958781

RESUMO

The protein kinase C (PKC) family plays important regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whereas in mammals, the PKC family comprises nine isoforms. Both Pkc1 and the novel isoform PKCδ are involved in the control of DNA integrity checkpoint activation, demonstrating that this mechanism is conserved from yeast to mammals. To explore the function of PKCδ in a non-tumor cell line, we employed CRISPR-Cas9 technology to obtain PKCδ knocked-out mouse embryonic stem cells (mESCs). This model demonstrated that the absence of PKCδ reduced the activation of the effector kinase CHK1, although it suggested that other isoform(s) might contribute to this function. Therefore, we used yeast to study the ability of each single PKC isoform to activate the DNA integrity checkpoint. Our analysis identified that PKCθ, the closest isoform to PKCδ, was also able to perform this function, although with less efficiency. Then, by generating truncated and mutant versions in key residues, we uncovered differences between the activation mechanisms of PKCδ and PKCθ and identified their essential domains. Our work strongly supports the role of PKC as a key player in the DNA integrity checkpoint pathway and highlights the advantages of combining distinct research models.


Assuntos
Proteína Quinase C , Saccharomyces cerevisiae , Animais , Camundongos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mamíferos/metabolismo , DNA , Proteína Quinase C-delta/genética
4.
J Cell Sci ; 133(24)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33443080

RESUMO

Start is the main decision point in the eukaryotic cell cycle at which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional programme through the inactivation of Start transcriptional repressors: the retinoblastoma family in mammals, or Whi5 and its recently identified paralogue Whi7 (also known as Srl3) in budding yeast. Here, we provide a comprehensive comparison of Whi5 and Whi7 that reveals significant qualitative differences. Indeed, the expression, subcellular localization and functionality of Whi7 and Whi5 are differentially regulated. Importantly, Whi7 shows specific properties in its association with promoters not shared by Whi5, and for the first time, we demonstrate that Whi7, and not Whi5, can be the main contributor to Start inhibition such as it occurs in the response to cell wall stress. Our results help to improve understanding of the interplay between multiple differentially regulated Start repressors in order to face specific cellular conditions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Ciclo Celular/genética , Divisão Celular , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
5.
Nucleic Acids Res ; 42(11): 7084-95, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24792164

RESUMO

The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans.


Assuntos
Dano ao DNA , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutagênicos/toxicidade , Mutação , Proteína Quinase C/análise , Proteína Quinase C/genética , Proteína Quinase C-delta/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
6.
Biochem J ; 458(2): 239-49, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24303792

RESUMO

Polar residues are present in TM (transmembrane) helices and may influence the folding or association of membrane proteins. In the present study, we use an in vivo approach to analyse the functional and structural roles for amino acids in membrane-spanning motifs using the Rot1 (reversal of Tor2 lethality 1) protein as a model. Rot1 is an essential membrane protein in Saccharomyces cerevisiae and it contains a single TM domain. An alanine insertion scanning analysis of this TM helix revealed that the integrity of the central domain is essential for protein function. We identified a critical serine residue inside the helix that plays an essential role in maintaining cell viability in S. cerevisiae. Replacement of the serine residue at position 250 with a broad variety of amino acids did not affect protein targeting and location, but completely disrupted protein function causing cell death. Interestingly, substitution of the serine residue by threonine resulted in sustained cell viability, demonstrating that the hydroxy group of the TM serine side chain plays a critical role in protein function. The results of the present study indicate that Rot1 needs the TM Ser250 to interact with other membrane components and exert its functional role, avoiding exposure of the serine hydrogen-bonding group at the lipid-exposed surface.


Assuntos
Membrana Celular/genética , Sobrevivência Celular/fisiologia , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Serina/genética , Sequência de Aminoácidos , Membrana Celular/fisiologia , Proteínas de Membrana/fisiologia , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Serina/fisiologia
7.
Cell Cycle ; 18(5): 580-595, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30739521

RESUMO

The yeast ß-karyopherin Msn5 controls the SBF cell-cycle transcription factor, responsible for the periodic expression of CLN2 cyclin gene at G1/S, and the nuclear export of Cln2 protein. Here we show that Msn5 regulates Cln2 by an additional mechanism. Inactivation of Msn5 causes a severe reduction in the cellular content of Cln2. This occurs by a post-transcriptional mechanism, since CLN2 mRNA level is not importantly affected in asynchronous cultures. Cln2 stability is not significantly altered in msn5 cells and inactivation of Msn5 causes a reduction in protein level even when Cln2 is stabilized. Therefore, the reduced amount of Cln2 in msn5 cells is mainly due not to a higher rate of protein degradation but to a defect in Cln2 synthesis. In fact, analysis of polysome profiles indicated that Msn5 inactivation causes a shift of CLN2 and SWI5 mRNAs from heavy-polysomal to light-polysomal and non-polysomal fractions, supporting a defect in Cln2 and Swi5 protein synthesis in the msn5 mutant. The analysis of truncated versions of Cln2 and of chimeric cyclins combining distinct domains from Cln2 and the related Cln1 cyclin identified an internal region in Cln2 from 181 to 225 residues that when fused to GFP is able to confer Msn5-dependent regulation of protein cellular content. Finally, we showed that a high level of Cln2 is toxic in the absence of Msn5. In summary, we described that Msn5 is required for the proper protein synthesis of specific proteins, introducing a new level of control of cell cycle regulators.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Carioferinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Ciclo Celular/genética , Ciclinas/genética , Regulação Fúngica da Expressão Gênica , Carioferinas/genética , Mutagênese , Polirribossomos/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
8.
PLoS One ; 14(12): e0223341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860637

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although most cSCCs have good prognosis, a subgroup of high-risk cSCC has a higher frequency of recurrence and mortality. Therefore, the identification of molecular risk factors associated with this aggressive subtype is of major interest. In this work we carried out a global-scale approach to investigate the DNA-methylation profile in patients at different stages, from premalignant actinic keratosis to low-risk invasive and high-risk non-metastatic and metastatic cSCC. The results showed massive non-sequential changes in DNA-methylome and identified a minimal methylation signature that discriminates between stages. Importantly, a direct comparison of low-risk and high-risk stages revealed epigenetic traits characteristic of high-risk tumours. Finally, a prognostic prediction model in cSCC patients identified a methylation signature able to predict the overall survival of patients. Thus, the analysis of DNA-methylation in cSCC revealed changes during the evolution of the disease through the different stages that can be of great value not only in the diagnosis but also in the prognosis of the disease.


Assuntos
Carcinoma de Células Escamosas/genética , Epigênese Genética/genética , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Impressões Digitais de DNA/métodos , Metilação de DNA/genética , Progressão da Doença , Epigenômica/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Ceratose Actínica/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias/métodos , Prognóstico , Fatores de Risco , Neoplasias Cutâneas/patologia
9.
Sci Total Environ ; 646: 1478-1488, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235633

RESUMO

Soil microbiology could be affected by the presence of pesticide residues during intensive farming, potentially threatening the soil environment. The aim here was to assess the dissipation of the herbicides triasulfuron and prosulfocarb, applied as a combined commercial formulation, and the changes in soil microbial communities (through the profile of phospholipid fatty acids (PLFAs) extracted from the soil) during the dissipation time of the herbicides under field conditions. The dissipation of herbicides and the soil microbial structure were assessed under different agricultural practices, such as the repeated application of herbicides (twice), in unamended and amended soils with two organic amendments derived from green compost (GC1 and GC2) and with non-irrigation and irrigation regimes. The results obtained indicate slower dissipation for triasulfuron than for prosulfocarb. The 50% dissipation time (DT50) decreased under all conditions for the second application of triasulfuron, although not for prosulfocarb. The DT50 values for both herbicides increased in the GC2 amended soil with the highest organic carbon (OC) content. The DT50 values decreased for prosulfocarb with irrigation, but not for triasulfuron, despite its higher water solubility. The herbicides did not have any significant effects on the relative population of Gram-negative and Gram-positive bacteria during the assay, but the relative abundance of Actinobacteria increased in all the soils with herbicides. At the end of the assay (215 days), the negative effects of herbicides on fungi abundance were significant (p < 0.05) for all the treatments. These microbiological changes were detected in non-irrigated and irrigated soils, and were more noticeable after the second application of herbicides. Actinobacteria could be responsible for the modification of herbicide degradation rates, which tend to be faster after the second application. This study makes a useful contribution to the evaluation of the soil environment and microbiological risks due to the long-term repeated application of herbicides under different agricultural management practices.


Assuntos
Agricultura/métodos , Herbicidas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Solo
10.
Biochem Mol Biol Educ ; 46(5): 527-535, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30226652

RESUMO

This article describes a laboratory exercise designed for undergraduate students in the subject of "Regulation of cell proliferation" which allows the students to carry out a research experiment in an important field such as cell cycle control, and to be introduced to a widely used technique in molecular biology laboratories such as the western blot. The cell cycle is regulated by the succession of cyclin-CDK kinase activities. Activation and inactivation of different cyclin-CDK complexes depend on the control of their positive and negative regulators, cyclins and CDK inhibitors (CKIs), respectively. In this experiment, fluctuations in the level of mitotic cyclin Clb2 and CDK inhibitor Sic1 throughout the cell cycle of Saccharomyces cerevisiae are analyzed, particularly in the context of the control of mitotic exit and Start, two of the most important cell cycle transitions. In order to do this, a cdc15 mutant strain is used to block cells in telophase and, upon release from this blocking, the variation in the levels of Clb2 and Sic1 proteins are analyzed by western blot. Progress along the cell cycle is also evaluated by microscopic analysis of cell morphology and nuclear staining. This practical illustrates the experimental basis of theoretical concepts worked in the classroom and it is a good framework for an in-depth discussion of these concepts based on experimental data analysis. © 2018 International Union of Biochemistry and Molecular Biology, 46(5):527-535, 2018.


Assuntos
Biologia Celular/educação , Quinases Ciclina-Dependentes/genética , Regulação Enzimológica da Expressão Gênica/genética , Laboratórios , Biologia Molecular/educação , Estudantes , Universidades , Ciclo Celular , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/química , Ciclinas/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia
11.
Mol Cell Biol ; 23(9): 3126-40, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12697814

RESUMO

The control of the subcellular localization of cell cycle regulators has emerged as a crucial mechanism in the regulation of cell division. In the present work, we have characterized the function of the karyopherin Msn5p in the control of the cell cycle of Saccharomyces cerevisiae. Phenotypic analysis of the msn5 mutant revealed an increase in cell size and a functional interaction between Msn5p and the cell cycle transcription factor SBF (composed of the Swi4p and Swi6p proteins), indicating that Msn5p is involved in Start control. In fact, we have shown that the level of Cln2p protein is drastically reduced in an msn5 mutant. The effect on CLN2 expression is mediated at a transcriptional level, Msn5p being necessary for proper SBF-dependent transcription. On the contrary, loss of MSN5 has no effect on the closely related transcription factor MBF (composed of the Mbp1p and Swi6p proteins). Regulation of SBF by Msn5p is exerted by control of the localization of the regulatory subunit Swi6p. Swi6p shuttles between the nucleus and the cytoplasm during the cell cycle, and we have found that Msn5p is required for Swi6p export from the nucleus during the G(2)-M phase. What is more important, we have demonstrated that export of Swi6p to the cytoplasm is required for SBF activity, providing evidence for a functional switch of Swi6p linked to its nucleocytoplasmic shuttling during the cell cycle.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Carioferinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , Ciclinas/genética , Citoplasma/metabolismo , Proteínas de Ligação a DNA , Regulação Fúngica da Expressão Gênica , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica
12.
FEBS Open Bio ; 7(1): 74-87, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28097090

RESUMO

The yeast cyclins Cln1 and Cln2 are very similar in both sequence and function, but some differences in their functionality and localization have been recently described. The control of Cln1 and Cln2 cellular levels is crucial for proper cell cycle initiation. In this work, we analyzed the degradation patterns of Cln1 and Cln2 in order to further investigate the possible differences between them. Both cyclins show the same half-life but, while Cln2 degradation depends on ubiquitin ligases SCFGrr1 and SCFCdc4, Cln1 is affected only by SCFGrr1. Degradation analysis of chimeric cyclins, constructed by combining fragments from Cln1 and Cln2, identifies the N-terminal sequence of the proteins as responsible of the cyclin degradation pattern. In particular, the N-terminal region of Cln2 is required to mediate degradation by SCFCdc4. This region is involved in nuclear import of Cln1 and Cln2, which suggests that differences in degradation may be due to differences in localization. Moreover, a comparison of the cyclins that differ only in the presence of the Cln2 nuclear export signal indicates a greater instability of exported cyclins, thus reinforcing the idea that cyclin stability is influenced by their localization.

13.
Nat Commun ; 8(1): 329, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839131

RESUMO

Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program by G1 CDK-cyclin complexes through the inactivation of Start transcriptional repressors, Whi5 in yeast or Rb in mammals. Here we provide novel keys of how Whi7, a protein related at sequence level to Whi5, represses Start. Whi7 is an unstable protein, degraded by the SCFGrr1 ubiquitin-ligase, whose stability is cell cycle regulated by CDK1 phosphorylation. Importantly, Whi7 associates to G1/S gene promoters in late G1 acting as a repressor of SBF-dependent transcription. Our results demonstrate that Whi7 is a genuine paralog of Whi5. In fact, both proteins collaborate in Start repression bringing to light that yeast cells, as occurs in mammalian cells, rely on the combined action of multiple transcriptional repressors to block Start transition.The commitment of cells to a new cycle of division involves inactivation of the Start transcriptional repressor Whi5. Here the authors show that the sequence related protein Whi7 associates to G1/S gene promoters in late G1 and collaborates with Whi5 in Start repression.


Assuntos
Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Pontos de Checagem do Ciclo Celular , Ciclinas/análise , Ciclinas/genética , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia
14.
PLoS One ; 12(8): e0183067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28800621

RESUMO

Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a reduced protein activity in the cell that was only apparent in particular conditions. Therefore, an extremely cautious approach is required when using this strategy.


Assuntos
Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Proteínas Recombinantes de Fusão/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Artefatos , Epitopos/genética , Epitopos/metabolismo , Marcação de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem/métodos
15.
Genetics ; 171(4): 1485-98, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16118191

RESUMO

The rsf12 mutation was isolated in a synthetic lethal screen for genes functionally interacting with Swi4. RSF12 is CLB5. The clb5 swi4 mutant cells arrest at G(2)/M due to the activation of the DNA-damage checkpoint. Defects in DNA integrity was confirmed by the increased rates of chromosome loss and mitotic recombination. Other results suggest the presence of additional defects related to morphogenesis. Interestingly, genes of the PKC pathway rescue the growth defect of clb5 swi4, and pkc1 and slt2 mutations are synthetic lethal with clb5, pointing to a connection between Clb5, the PKC pathway, and Swi4. Different observations suggest that like Clb5, the PKC pathway and Swi4 are involved in the control of DNA integrity: there is a synthetic interaction between pkc1 and slt2 with rad9; the pkc1, slt2, and swi4 mutants are hypersensitive to hydroxyurea; and the Slt2 kinase is activated by hydroxyurea. Reciprocally, we found that clb5 mutant is hypersensitive to SDS, CFW, latrunculin B, or zymolyase, which suggests that, like the PKC pathway and Swi4, Clb5 is related to cell integrity. In summary, we report numerous genetic interactions and phenotypic descriptions supporting a close functional relationship between the Clb5 cyclin, the PKC pathway, and the Swi4 transcription factor.


Assuntos
Ciclo Celular/genética , Cromossomos Fúngicos/genética , Ciclina B/metabolismo , DNA Fúngico/química , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Ciclo Celular/fisiologia , Ciclina B/genética , Proteínas de Ligação a DNA , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Hidroxiureia , Imunoprecipitação , Mutação/genética , Proteína Quinase C/genética , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
16.
Genetics ; 168(1): 129-40, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15454532

RESUMO

Cln1p and Cln2p are considered as equivalent cyclins on the basis of sequence homology, regulation, and functional studies. Here we describe a functional distinction between the Cln1p and Cln2p cyclins in the control of the G1/S transition. Inactivation of CLN2, but not of CLN1, leads to a larger-than-normal cell size, whereas overexpression of CLN2, but not of CLN1, results in smaller-than-normal cells. Furthermore, mild ectopic expression of CLN2, but not of CLN1, suppresses the lethality of swi4swi6 and cdc28 mutant strains. In the absence of Cln1p, the kinetics of budding, initiation of DNA replication, and activation of the Start-transcription program are not affected; by contrast, loss of Cln2p causes a delay in bud emergence. A primary role for Cln2p but not for Cln1p in budding is reinforced by the observation that only the cln2 mutation is synthetic lethal with a cdc42 mutation, and only the cln2 mutant strain is hypersensitive to latrunculin B. In addition, we found that Cln1p showed a more prominent nuclear staining than Cln2p. Finally, chimeric proteins composed of Cln1p and Cln2p revealed that Cln2p integrity is required for its functional specificity.


Assuntos
Ciclinas/fisiologia , Mitose/fisiologia , Fase S/fisiologia , Saccharomyces cerevisiae/fisiologia , Northern Blotting , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes , Tamanho Celular , Ciclinas/genética , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Imunoprecipitação , Mitose/genética , Mutação/genética , Fase S/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Tiazóis , Tiazolidinas
17.
Am J Cardiol ; 70(18): 1477-80, 1992 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-1442621

RESUMO

Animal studies have demonstrated that thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) is accelerated and that bleeding is reduced when rt-PA is infused over a short period. Previous clinical studies in patients with venous thromboembolism have shown that rt-PA is an effective thrombolytic agent when administered by continuous infusion over 2 to 24 hours. Clinical experience of bolus rt-PA administration in patients with massive acute pulmonary embolism (PE) is, however, limited. A prospective open study was conducted in which 54 patients with massive PE (Miller index > or = 20 of 34) received a 10-minute infusion of rt-PA at a dose of 1 mg/kg. Perfusion lung scanning was used to assess the change in pulmonary perfusion after drug administration. At 48 hours and 10 days, the mean absolute improvements in the perfusion defect were 11 and 31%, respectively. In addition, a significant clinical improvement occurred within 2 hours in 11 of the 15 shocked patients. Five patients died (9%) as a result of persistent shock (3 patients), neurologic damage (1 patient) or intracranial bleeding (1 patient). Major bleeding occurred in 8 patients (15%). Long-term follow-up information was available for 44 of the 49 discharged patients: 2 had died and 12 (27%) complained of persistent exertional dyspnea, 7 of whom had an associated heart or lung disease or chronic thromboembolism at admission. These results suggest that a bolus regimen of rt-PA could provide a convenient approach to thrombolytic therapy in patients with massive PE.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Embolia Pulmonar/tratamento farmacológico , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Angiografia , Doença Crônica , Feminino , Seguimentos , Hemorragia/fisiopatologia , Heparina/administração & dosagem , Heparina/uso terapêutico , Humanos , Infusões Intravenosas , Masculino , Estudos Prospectivos , Embolia Pulmonar/diagnóstico por imagem , Cintilografia , Recidiva , Segurança , Choque Cardiogênico/fisiopatologia , Taxa de Sobrevida , Tromboembolia/fisiopatologia , Ativador de Plasminogênio Tecidual/administração & dosagem
18.
AIDS Res Hum Retroviruses ; 14(1): 15-23, 1998 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9453247

RESUMO

We report the first case of mother-to-infant transmission and follow-up for an HIV-1 group O virus from Cameroon. Isolates were obtained from the mother at delivery and from the child at birth and when 16 and 30 months old. We analyzed the viral evolution within mother and child by examining 51 sequences spanning C2V3 regions of the viral envelope gene. The mother carried two genotypes, v1 and v2. The genotype v1 was dominant in the child at birth, and persisted as a minor genotype at age 30 months. The genotype v2 was absent in the child sequences. The variability of the nucleotide sequences of the isolates from the child increased with age from 0.8 to 6%, and a novel genotype (v3) appeared at age 30 months. The nonsynonymous-to-synonymous mutation ratio increased with the age of the child, from 0.75 at birth to 1.86 at 30 months, indicating a high rate of fixation of amino acid changes in the child. The overall pattern was similar to that reported by Ganeshan et al. (J Virol 1997;71:663-677) for group M viruses infecting child with a slow-developing form of the disease.


Assuntos
Síndrome da Imunodeficiência Adquirida/transmissão , Genes env/genética , HIV-1/genética , Transmissão Vertical de Doenças Infecciosas , Síndrome da Imunodeficiência Adquirida/virologia , Sequência de Aminoácidos , Pré-Escolar , Evolução Molecular , Feminino , Variação Genética , Genótipo , Glicosilação , Humanos , Lactente , Recém-Nascido , Dados de Sequência Molecular , Mutação , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Int J Tuberc Lung Dis ; 2(6): 462-70, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9626603

RESUMO

SETTING: An open clinical trial for the treatment of Mycobacterium avium intracellulare complex (MAIC) lung disease in human immunodeficiency virus (HIV)-seronegative patients. OBJECTIVE: To assess the efficacy and tolerance of clarithromycin (0.75-2 g/day) combined with minocycline (200 mg/day) and clofazimine (100 mg/day) for 15 months. DESIGN: The study was carried out from August 1992 to June 1994 by pulmonologists of various French medical centres. The patients to be enrolled were of either sex, over 18 years of age, HIV-seronegative and suffering from MAIC lung disease, with a confirmed bacteriological and radiological diagnosis. Examinations were to be performed after 1, 2, 3, 6, 9, 12 and 15 months of treatment. RESULTS: Thirty patients were included, 16 males and 14 females. Eight did not complete the study due to deviations from protocol or adverse effects. The remainder completed the study with a post-treatment follow-up of 27 +/- 7 months. Among the 22 evaluable patients, 18 had a history of lung disease. Tolerance to the drugs was generally good, apart from three cases of hepatic disturbances and three cases of ototoxicity, which required a decrease in clarithromycin dosage after a short interruption of treatment. There were 14 treatment successes, seven treatment failures, defined by absence of bacteriologic conversion, and in one patient the disease evolution remains uncertain. CONCLUSION: The combination of clarithromycin with minocycline and clofazimine proved effective with persistently negative cultures in 64% of the patients, and an overall good drug tolerance.


Assuntos
Claritromicina/uso terapêutico , Clofazimina/uso terapêutico , Quimioterapia Combinada/uso terapêutico , Minociclina/uso terapêutico , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Idoso , Antibacterianos/uso terapêutico , Esquema de Medicação , Feminino , Soronegatividade para HIV , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Tuberculose Pulmonar/microbiologia
20.
Syst Appl Microbiol ; 21(4): 539-45, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9924822

RESUMO

An optimized technique of polyacrylamide gel electrophoresis, Staircase Electrophoresis (SCE), was applied to determine the stable Low Molecular Weight RNA (LMW RNA) profiles of 25 Frankia strains from diverse geographic origins and host specificity groups as well as species from other actinomycete genera. Application of the technique permits the rapid identification of Frankia strains and their differentiation from other actinomycetes. The isolates used in this study were grouped in eight clusters, each comprising strains with identical LMW RNA profiles. Comparison of these results with others obtained from DNA sequences or DNA hybridization methods suggest a high degree of complexity in the genus Frankia. Application of SCE to profile LMW RNA should in the future facilitate biodiversity studies of Frankia and discrimination of new species.


Assuntos
Actinomycetales/classificação , Actinomycetales/genética , Eletroforese em Gel de Poliacrilamida/métodos , RNA Bacteriano/análise , Peso Molecular , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa