RESUMO
Food allergies are common worldwide and have become a major public health concern; more than 220 million people are estimated to suffer from food allergies worldwide. On the other hand, polyphenols, phenolic substances found in plants, have attracted attention for their health-promoting functions, including their anti-allergic effects. In this study, we examined the potential inhibitory effects of 80% ethanol extracts from 22 different vegetables on the degranulation process in RBL-2H3 cells. Our aim was to identify vegetables that could prevent and treat type I allergic diseases. We found strong inhibition of degranulation by extracts of perilla and chives. Furthermore, we verified the respective efficacy via animal experiments, which revealed that the anaphylactic symptoms caused by ovalbumin (OVA) load were alleviated in OVA allergy model mice that ingested vegetable extracts of perilla and chives. These phenomena were suggested to be caused by induction of suppression in the expression of subunits that constitute the high-affinity IgE receptor, particularly the α-chain of FcεR I. Notably, the anti-allergic effects of vegetables that can be consumed daily are expected to result in the discovery of new anti-immediate allergenic drugs based on the components of these vegetables.
Assuntos
Antialérgicos , Hipersensibilidade Alimentar , Humanos , Camundongos , Animais , Antialérgicos/farmacologia , Verduras/metabolismo , Imunoglobulina E/metabolismo , Mastócitos , Hipersensibilidade Alimentar/tratamento farmacológico , Extratos Vegetais/farmacologia , Camundongos Endogâmicos BALB CRESUMO
Treatment with itadori extract inhibited the growth of mouse colon cancer cells (Colon-26) in mice. In addition, it induced DNA fragmentation and caspase 3/7 activation in Colon-26 cells, suggesting potent induction of apoptosis. Itadori extracts are rich in neochlorogenic acid and rutin and also contain quercetin and piceatannol. These polyphenols are thought to be involved in the observed DNA fragmentation and caspase 3/7 activation in colon cancer cells and may thus have anticancer effects. There is hence scope for development of the leaf of itadori, which currently has only a few known uses, as a novel anti-tumor therapeutic.
Assuntos
Proliferação de Células , Neoplasias do Colo , Fallopia japonica , Extratos Vegetais , Animais , Camundongos , Apoptose , Caspase 3/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de PlantaRESUMO
Consumption of a high-fat diet (HFD) is associated with an increased risk of metabolic diseases, cancer, and neurological disorders, which are major global health concerns. In the present study, mice were fed a HFD containing 40% fat and 0.5% or 1.0% acylated steryl-ß-glucosides (ASG) and their gut microbiota was compared to that of mice fed with a low-fat diet (LFD). After 55 d, the epididymal fat weight was higher in the HFD and ASG groups than in the LFD group; however, the epididymal fat weight was lower in the ASG group than in the HFD group. The abundance of gut microbiota increased with HFD in obese micespecific Bacillota, but decreased when ASG was added to the HFD. The number of intestinal bacteria involved in the production of carcinogenic secondary bile acids was increased by the consumption of HFD, but decreased by the addition of ASG to HSD. This finding may indicate the gut bacteria-mediated health benefits of ASG.