Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
J Clin Invest ; 128(1): 359-368, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202483

RESUMO

Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by duplication of peripheral myelin protein 22 (PMP22) and is the most common hereditary peripheral neuropathy. CMT1A is characterized by demyelination and axonal loss, which underlie slowed motor nerve conduction velocity (MNCV) and reduced compound muscle action potentials (CMAP) in patients. There is currently no known treatment for this disease. Here, we show that antisense oligonucleotides (ASOs) effectively suppress PMP22 mRNA in affected nerves in 2 murine CMT1A models. Notably, initiation of ASO treatment after disease onset restored myelination, MNCV, and CMAP almost to levels seen in WT animals. In addition to disease-associated gene expression networks that were restored with ASO treatment, we also identified potential disease biomarkers through transcriptomic profiling. Furthermore, we demonstrated that reduction of PMP22 mRNA in skin biopsies from ASO-treated rats is a suitable biomarker for evaluating target engagement in response to ASO therapy. These results support the use of ASOs as a potential treatment for CMT1A and elucidate potential disease and target engagement biomarkers for use in future clinical trials.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Neurônios Motores/metabolismo , Proteínas da Mielina/antagonistas & inibidores , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Pele/metabolismo , Potenciais de Ação/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Proteínas da Mielina/biossíntese , Proteínas da Mielina/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Pele/patologia
4.
Mol Ther Nucleic Acids ; 8: 508-519, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918051

RESUMO

No treatments exist to slow or halt Parkinson's disease (PD) progression; however, inhibition of leucine-rich repeat kinase 2 (LRRK2) activity represents one of the most promising therapeutic strategies. Genetic ablation and pharmacological LRRK2 inhibition have demonstrated promise in blocking α-synuclein (α-syn) pathology. However, LRRK2 kinase inhibitors may reduce LRRK2 activity in several tissues and induce systemic phenotypes in the kidney and lung that are undesirable. Here, we test whether antisense oligonucleotides (ASOs) provide an alternative therapeutic strategy, as they can be restricted to the CNS and provide a stable, long-lasting reduction of protein throughout the brain. Administration of LRRK2 ASOs to the brain reduces LRRK2 protein levels and fibril-induced α-syn inclusions. Mice exposed to α-syn fibrils treated with LRRK2 ASOs show more tyrosine hydroxylase (TH)-positive neurons compared to control mice. Furthermore, intracerebral injection of LRRK2 ASOs avoids unwanted phenotypes associated with loss of LRRK2 expression in the periphery. This study further demonstrates that a reduction of endogenous levels of normal LRRK2 reduces the formation of α-syn inclusions. Importantly, this study points toward LRRK2 ASOs as a potential therapeutic strategy for preventing PD-associated pathology and phenotypes without causing potential adverse side effects in peripheral tissues associated with LRRK2 inhibition.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa