Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Bone Miner Metab ; 42(3): 271-281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38557896

RESUMO

INTRODUCTION: Low energy availability due to excessive exercise lowers bone mass and impairs various physiological functions, including immunity and hematopoiesis. We focused on Cxcl12 abundant reticular (CAR) cells, which are bone marrow mesenchymal stem cells and are essential for the maintenance of hematopoietic and immune cells in bone marrow. We examine the functional changes in CAR cells resulting from dietary restriction combined with exercise. MATERIALS AND METHODS: Five-week-old wild-type female mice were divided into an ad libitum group (CON), a 60% dietary restriction group (DR), an ad libitum with exercise group (CON + ex), and a 60% dietary restriction with exercise group (DR + ex). Blood parameters, bone structure parameters, and bone marrow fat volume were evaluated after 5 weeks. In addition, bone marrow CAR cells were isolated by cell sorting and analyzed for gene expression by RT-qPCR. RESULTS: Bone mineral density (BMD) was significantly decreased in DR and DR + ex compared to CON and CON + ex. Especially, cortical bone mass and thickness were significantly decreased in DR and DR + ex groups, whereas trabecular bone mass was significantly increased. Bone marrow fat volume was significantly increased in DR and DR + ex groups compared to CON and CON + ex. The number of leukocytes in the blood was significantly decreased in the DR + ex group compared to the other three groups. RT-qPCR showed a significant decrease in gene expression of both Foxc1 and Runx2 in CAR cells of the DR + ex group compared to CON. CONCLUSION: Dietary restriction combined with exercise promotes CAR cell differentiation into bone marrow adipocyte and suppresses osteoblast differentiation.


Assuntos
Densidade Óssea , Quimiocina CXCL12 , Condicionamento Físico Animal , Animais , Feminino , Condicionamento Físico Animal/fisiologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica , Restrição Calórica , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia
2.
Biochem Biophys Res Commun ; 590: 132-138, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974301

RESUMO

Osteocytes are master regulators of skeletal homeostasis. However, little is known about the molecular mechanism of their differentiation. Epigenetic regulations, especially H3K27me3 modification, play critical roles in cell differentiation. Here, we found that H3K27me3 in the loci of osteocyte-expressing genes decreased during osteocyte differentiation and that H3K27me3 demethylase, Utx, was bound to the loci of those genes. To investigate the physiological functions of Utx in vivo, we generated late osteoblast-to-osteocyte specific Utx knockout mice using Dmp1-cre mice (UtxΔOcy/ΔOcy). Micro CT analyses showed that UtxΔOcy/ΔOcy displayed osteopenic phenotypes with lower bone volume and trabecular number, and greater trabecular separation. Bone histomorphometric analysis showed that bone mineralization and formation were significantly lower in UtxΔOcy/ΔOcy. Furthermore, Dmp1 expression and the number of osteocytes were significantly decreased in UtxΔOcy/ΔOcy. These results suggest that Utx in Dmp1-expressing osteoblast/osteocyte positively regulates osteoblast-to-osteocyte differentiation through H3K27me3 modifications in osteocyte genes. Our results provide new insight into the molecular mechanism of osteocyte differentiation.


Assuntos
Diferenciação Celular , Histona Desmetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Osteoblastos/citologia , Osteócitos/citologia , Animais , Sequência de Bases , Doenças Ósseas Metabólicas/genética , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Contagem de Células , Diferenciação Celular/genética , Regulação para Baixo/genética , Epigenoma , Loci Gênicos , Histona Desmetilases/deficiência , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteócitos/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Transcriptoma/genética
3.
Biochem Biophys Res Commun ; 559: 238-244, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33964733

RESUMO

Estrogen deficiency impairs fracture healing and homeostasis of bone tissue. OVX-induced estrogen deficiency in mice attenuates fracture healing and changes the expression ratio of estrogen receptor (ER) α and ERß in callus during the process of fracture healing. Therefore, ERs may be involved in the regulation of fracture healing. However, the roles of ERs in fracture healing are largely unknown. The purpose of this study was to clarify the significance of ERs during fracture healing using osteoblast-specific ER knockout mice in a mono-cortical drill hole bone regeneration model. The mature osteoblast-specific ER knockout mice were generated using osteocalcin (OCN)-Cre mice, and ERα and ERß flox mice (OCN-Cre; ERαf/f, ERαΔOb/ΔOb and OCN-Cre; ERßf/f, ERßΔOb/ΔOb). Drill hole surgery was conducted on the tibiae of 8-week-old female mice. The mice were sacrificed 10 or 14 days after surgery and the bones were analyzed by DXA, µCT and bone histomorphometry. DXA analysis revealed that intact femoral BMD was significantly decreased in ERαΔOb/ΔOb mice compared with ERαf/f mice, but there was no difference in bone mass between ERßΔOb/ΔOb and ERßf/f mice. Micro CT analyses showed that the callus volume at the restricted drill hole site in tibiae was significantly less in ERαΔOb/ΔOb compared to ERαf/f mice only at day 14 but not at day 10. In addition to femoral BMD, there was no significant difference in callus volume between ERßΔOb/ΔOb and ERßf/f mice. Bone histomorphometric analyses showed that Ob.S/BS and N.Ob/B.Pm were significantly less in ERαΔOb/ΔOb mice compared with ERαf/f mice only at day 10. In addition, Oc.S/BS and N.Oc/B.Pm were significantly less in ERαΔOb/ΔOb mice compared with ERαf/f mice only at day 14. These results suggest that ERα but not ERß in osteocalcin-positive osteoblasts may contribute to the late stage of bone regeneration.


Assuntos
Regeneração Óssea/fisiologia , Receptor alfa de Estrogênio/metabolismo , Osteoblastos/metabolismo , Animais , Osso e Ossos/patologia , Receptor beta de Estrogênio/metabolismo , Estrogênios/deficiência , Estrogênios/metabolismo , Consolidação da Fratura , Camundongos Knockout , Tamanho do Órgão , Ovariectomia
4.
Biochem Biophys Res Commun ; 534: 79-85, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310192

RESUMO

Epigenetic transcriptional regulation is essential for the differentiation of various types of cells, including skeletal muscle cells. DNA methyltransferase 1 (Dnmt1) is responsible for maintenance of DNA methylation patterns via cell division. Here, we investigated the relationship between Dnmt1 and skeletal muscle regeneration. We found that Dnmt1 is upregulated in muscles during regeneration. To assess the role of Dnmt1 in satellite cells during regeneration, we performed conditional knockout (cKO) of Dnmt1 specifically in skeletal muscle satellite cells using Pax7CreERT2 mice and Dnmt1 flox mice. Muscle weight and the cross-sectional area after injury were significantly lower in Dnmt1 cKO mice than in control mice. RNA sequencing analysis revealed upregulation of genes involved in cell adhesion and apoptosis in satellite cells from cKO mice. Moreover, satellite cells cultured from cKO mice exhibited a reduced number of cells. These results suggest that Dnmt1 is an essential factor for muscle regeneration and is involved in positive regulation of satellite cell number.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/lesões , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/citologia
5.
Int J Cancer ; 146(5): 1369-1382, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276604

RESUMO

The prognosis of patients with progressive prostate cancers that are hormone refractory and/or have bone metastasis is poor. Multiple therapeutic targets to improve prostate cancer patient survival have been investigated, including orphan GPCRs. In our study, we identified G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5A) as a candidate therapeutic molecule using integrative gene expression analyses of registered data sets for prostate cancer cell lines. Kaplan-Meier analysis of TCGA data sets revealed that patients who have high GPRC5A expression had significantly shorter overall survival. PC3 prostate cancer cells with CRISPR/Cas9-mediated GPRC5A knockout exhibited significantly reduced cell proliferation both in vitro and in vivo. RNA-seq revealed that GPRC5A KO PC3 cells had dysregulated expression of cell cycle-related genes, leading to cell cycle arrest at the G2/M phase. Furthermore, the registered gene expression profile data set showed that the expression level of GPRC5A in original lesions of prostate cancer patients with bone metastasis was higher than that without bone metastasis. In fact, GPRC5A KO PC3 cells failed to establish bone metastasis in xenograft mice models. In addition, our clinical study revealed that GPRC5A expression levels in prostate cancer patient samples were significantly correlated with bone metastasis as well as the patient's Gleason score (GS). Combined assessment with the immunoreactivity of GPRC5A and GS displayed higher specificity for predicting the occurrence of bone metastasis. Together, our findings indicate that GPRC5A can be a possible therapeutic target and prognostic marker molecule for progressive prostate cancer.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Acoplados a Proteínas G/biossíntese , Animais , Neoplasias Ósseas/genética , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Fosforilação , Neoplasias da Próstata/genética , Receptores Acoplados a Proteínas G/genética
6.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757091

RESUMO

The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the "growth plate", is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.


Assuntos
Desenvolvimento Ósseo , Ossos da Extremidade Inferior/metabolismo , Ossos da Extremidade Superior/metabolismo , Lâmina de Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Animais , Ossos da Extremidade Inferior/crescimento & desenvolvimento , Ossos da Extremidade Superior/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Humanos , Transdução de Sinais
7.
J Bone Miner Res ; 39(3): 341-356, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477771

RESUMO

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovitis, bone and cartilage destruction, and increased fracture risk with bone loss. Although disease-modifying antirheumatic drugs have dramatically improved clinical outcomes, these therapies are not universally effective in all patients because of the heterogeneity of RA pathogenesis. Therefore, it is necessary to elucidate the molecular mechanisms underlying RA pathogenesis, including associated bone loss, in order to identify novel therapeutic targets. In this study, we found that Budding uninhibited by benzimidazoles 1 (BUB1) was highly expressed in RA patients' synovium and murine ankle tissue with arthritis. As CD45+CD11b+ myeloid cells are a Bub1 highly expressing population among synovial cells in mice, myeloid cell-specific Bub1 conditional knockout (Bub1ΔLysM) mice were generated. Bub1ΔLysM mice exhibited reduced femoral bone mineral density when compared with control (Ctrl) mice under K/BxN serum-transfer arthritis, with no significant differences in joint inflammation or bone erosion based on a semi-quantitative erosion score and histological analysis. Bone histomorphometry revealed that femoral bone mass of Bub1ΔLysM under arthritis was reduced by increased osteoclastic bone resorption. RNA-seq and subsequent Gene Set Enrichment Analysis demonstrated a significantly enriched nuclear factor-kappa B pathway among upregulated genes in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated bone marrow-derived macrophages (BMMs) obtained from Bub1ΔLysM mice. Indeed, osteoclastogenesis using BMMs derived from Bub1ΔLysM was enhanced by RANKL and tumor necrosis factor-α or RANKL and IL-1ß treatment compared with Ctrl. Finally, osteoclastogenesis was increased by Bub1 inhibitor BAY1816032 treatment in BMMs derived from wildtype mice. These data suggest that Bub1 expressed in macrophages plays a protective role against inflammatory arthritis-associated bone loss through inhibition of inflammation-mediated osteoclastogenesis.


Rheumatoid arthritis (RA) is a disease caused by an abnormal immune system, resulting in inflammation, swelling, and bone destruction in the joints, along with systemic bone loss. While new medications have dramatically improved treatment efficacy, these therapies are not universally effective for all patients. Therefore, we need to understand the regulatory mechanisms behind RA, including associated bone loss, to develop better therapies. In this study, we found that Budding uninhibited by benzimidazoles 1 (Bub1) was highly expressed in inflamed joints, especially in myeloid cells, which are a type of immune cells. To explore its role, we created myeloid cell­specific Bub1 conditional knockout (cKO) mice and induced arthritis to analyze its role during arthritis. The cKO mice exhibited lower bone mineral density when compared with control mice under inflammatory arthritis because of increased osteoclastic bone resorption, without significant differences in joint inflammation or bone erosion. Further investigation showed that Bub1 prevents excessive osteoclast differentiation induced by inflammation in bone marrow macrophages. These data suggest that Bub1 in macrophages protects against bone loss caused by inflammatory arthritis, offering potential insights for developing treatments that focus on bone health.


Assuntos
Artrite Experimental , Artrite Reumatoide , Doenças Ósseas Metabólicas , Reabsorção Óssea , Animais , Humanos , Camundongos , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/genética , Inflamação/patologia , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Sci Rep ; 12(1): 22596, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585504

RESUMO

Benign paroxysmal positional vertigo (BPPV) is associated with menopause and/or osteopenia. Morphological changes in the otoconial layer have been reported after ovariectomy (OVX). Moreover, hormone replacement therapy decreases BPPV risk. However, knowledge concerning the effect of hormonal therapy on the otoconial changes caused by estrogen deficiency is limited. We aimed to examine the effect of hormonal therapy on otoconial changes caused by estrogen deficiency. We hypothesized that hormonal therapy could reduce otoconial changes caused by OVX. Eight-week-old C57BL/6 mice were divided into four groups: sham operation with implantation of vehicle (sham + v), OVX with implantation of vehicle (OVX + v), OVX with implantation of estradiol (E2) (OVX + E2), and OVX with implantation of raloxifene (RAL) (OVX + RAL) groups. Otoconial layer volume was measured by micro-CT at 4 weeks after OVX or the sham operation. The otic bullae were removed; immunohistochemistry was performed for estrogen receptor alpha and 4-hydroxynonenal. Otoconial layer volume was significantly higher in the OVX + v than in the sham + v group. E2 and RAL significantly reduced these changes in the endometrial layer. The staining of estrogen receptor alpha and 4-hydroxynonenal were stronger in the OVX + v than in the sham + v group but equal in the sham + v, OVX + E2, and OVX + RAL groups. These results indicate that E2 and RAL are effective against morphological changes of the otoconial layer caused by estrogen deficiency via oxidative stress reduction.


Assuntos
Receptor alfa de Estrogênio , Cloridrato de Raloxifeno , Animais , Feminino , Humanos , Camundongos , Estradiol/farmacologia , Estrogênios , Camundongos Endogâmicos C57BL , Ovariectomia
9.
Physiol Rep ; 7(6): e14046, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30916457

RESUMO

Resistance training (RT) has been known to be effective in maintaining and improving bone strength, which is based on bone mineral density (BMD) and bone quality. However, it is not clear whether RT is effective in improving bone strength in patients with type-2 diabetes mellitus (T2DM), who have a high risk of fracture. Therefore, we tested the effects of a 6-week RT regimen using percutaneous electrical stimulation in T2DM model rats, male Otsuka Long-Evans Tokushima Fatty (OLETF), and its control, Long-Evans Tokushima Otsuka (LETO). After 6 weeks of RT, tibial BMD in RT legs was significantly higher than that in control (CON) legs in both groups. In diaphyseal cortical bone, bone area/tissue area, and cortical thickness was significantly increased in RT legs compared with CON legs in both groups. Cortical porosity was highly observed in OLETF compared with LETO, but RT improved cortical porosity in both groups. Interestingly, trabecular number, trabecular thickness and trabecular space as well as BMD and bone volume/tissue volume in proximal tibial metaphyseal trabecular bone were significantly improved in RT legs compared with CON legs in both groups. In contrast, connectivity density and structural model index were not affected by RT. These results indicate that the 6-week RT regimen effectively increased BMD and improved bone quality in T2DM model rats as well as control rats. Therefore, RT may have the potential to improve bone strength and reduce fracture risk, even in patients with T2DM.


Assuntos
Densidade Óssea , Remodelação Óssea , Diabetes Mellitus Tipo 2/terapia , Treinamento Resistido , Tíbia/fisiopatologia , Animais , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Terapia por Estimulação Elétrica , Masculino , Ratos Endogâmicos OLETF , Ratos Long-Evans , Tíbia/diagnóstico por imagem , Fatores de Tempo
10.
J Clin Med Res ; 10(1): 13-21, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29238429

RESUMO

BACKGROUND: Vitamin D and calcium are essential nutrients for bone health. In addition, vitamin D suppresses inflammatory cytokines and increases bone resorption. Therefore, improvements in bone health by calcium and vitamin D supplementation have the potential to not only improve calcium metabolism but also suppress inflammation associated with exercise training. The purpose of this study was to determine whether ongoing vitamin D supplementation and low-fat milk intake by female high-school endurance runners would improve bone metabolism by suppressing inflammatory cytokines and the parathyroid hormone (PTH). METHODS: Twenty female high-school runners were assigned to a vitamin D supplement and low-fat milk intake group (MKD) or a control group (CON). Participants in the MKD group consumed a vitamin D supplement (1,000 IU/day) and low-fat milk (Ca 315 mg/day) for 6 months. Bone mineral density measurements, blood samples, and questionnaires (regarding menses and diet) were carried out. The UMIN Clinical Trials Registry number is UMIN000027854. RESULTS: The 25-hydroxyvitamin D (25(OH)D) concentration in MKD was sustained and PTH concentration was decreased regardless of the state of menses. The correlation coefficients of 25(OH)D or PTH concentrations and bone metabolism markers were analyzed by partial correlation coefficient via adjusting the model for frequency of menses. CTX and 25(OH)D concentration were significantly and inversely correlated at baseline (r = -0.61, P < 0.01), 3 months (r = -0.54, P = 0.02), and 6 months (r = -0.53, P = 0.02). CTX and PTH were significantly and positively correlated at 3 months (r = 0.63, P < 0.01) and 6 months (r = 0.52, P = 0.02). The bone alkaline phosphatase (BAP)/CTX ratio and 25(OH)D concentration were significantly and positively correlated at 3 months (r = 0.59, P = 0.01) and 6 months (r = 0.56, P = 0.01). The BAP/CTX ratio and PTH were significantly and inversely correlated at 3 months (r = -0.59, P = 0.01) and 6 months (r = -0.58, P < 0.01). CONCLUSIONS: This study suggested that vitamin D and low-fat milk supplementation improves bone metabolism by sustaining the 25(OH)D concentration and decreasing the PTH concentration in female high-school endurance runners regardless of the state of menses.

11.
Nutrients ; 8(12)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27916891

RESUMO

We aimed to compare site-specific bone mineral densities (BMDs) between adolescent endurance runners and sprinters and examine the relationship of fat-free mass (FFM) and nutrient intake on BMD. In this cross-sectional study, 37 adolescent female endurance runners and sprinters (16.1 ± 0.8 years) were recruited. BMD and FFM were assessed by dual-energy X-ray absorptiometry. Nutrient intake and menstrual state were evaluated by questionnaires. After adjusting for covariates, spine and total bone less head (TBLH) BMDs were significantly higher in sprinters than endurance runners (TBLH, 1.02 ± 0.05 vs. 0.98 ± 0.06 g/cm²; spine, 0.99 ± 0.06 vs. 0.94 ± 0.06 g/cm²; p < 0.05). There was no significant difference between groups in other sites. The rate of menstrual abnormality was higher in endurance runners compared with sprinters (56.3% vs. 23.8%; p < 0.05). FFM was a significant covariate for BMD on all sites except the spine (p < 0.05). Dietary intake of vitamin D was identified as a significant covariate only for pelvic BMD (p < 0.05). The BMDs of different sites among endurance runners and sprinters were strongly related to FFM. However, the association of FFM with spine BMD cannot be explained by FFM alone. Other factors, including nutrition and/or mechanical loading, may affect the spine BMD.


Assuntos
Atletas , Densidade Óssea/fisiologia , Corrida , Adolescente , Estudos Transversais , Feminino , Humanos , Esportes/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa