Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 4): 662-670, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163304

RESUMO

Transmission measurements of the soft X-ray beamline to the Small Quantum Systems (SQS) scientific instrument at the SASE3 undulator of European XFEL are presented. Measurements are reported for a wide range of photon energies (650 eV to 2400 eV), using X-ray gas monitors as well as a bolometric radiometer. The results are in good agreement with simulations for the beam transport and show a transmission of up to 80% over the whole photon energy range. The contribution of second- and third-harmonic radiation of the soft X-ray undulator is determined at selected photon energies by performing transmission measurements using a gas absorber to provide variable attenuation of the incoming photon flux. A comparison of the results with semi-analytic calculations for the generation of free-electron laser pulses in the SASE3 undulator reveals an influence of apertures along the beam transport on the exact harmonic content to be accounted for at the experiment. The second-harmonic content is measured to be in the range of 0.1% to 0.3%, while the third-harmonic contributed a few percent to the SASE3 emission. For experiments at the SQS instrument, these numbers can be reduced through specific selections of the mirror reflection angles.


Assuntos
Lasers , Síncrotrons , Raios X , Radiografia , Fótons
2.
J Synchrotron Radiat ; 30(Pt 2): 457-467, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891860

RESUMO

The Small Quantum Systems instrument is one of the six operating instruments of the European XFEL, dedicated to the atomic, molecular and cluster physics communities. The instrument started its user operation at the end of 2018 after a commissioning phase. The design and characterization of the beam transport system are described here. The X-ray optical components of the beamline are detailed, and the beamline performances, transmission and focusing capabilities are reported. It is shown that the X-ray beam can be effectively focused as predicted by ray-tracing simulations. The impact of non-ideal X-ray source conditions on the focusing performances is discussed.

3.
Phys Rev Lett ; 131(7): 076002, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656857

RESUMO

Superfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced. From x-ray diffraction images of xenon-doped droplets, we identify that single compact structures, assigned to vortex-free aggregation, prevail up to 10^{8} atoms per droplet. This finding builds the basis for exploring the assembly of far-from-equilibrium nanostructures at low temperatures.

4.
Phys Rev Lett ; 131(25): 253201, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38181353

RESUMO

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

5.
J Synchrotron Radiat ; 29(Pt 3): 755-764, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511008

RESUMO

A set of electron time-of-flight spectrometers for high-resolution angle-resolved spectroscopy was developed for the Small Quantum Systems (SQS) instrument at the SASE3 soft X-ray branch of the European XFEL. The resolving power of this spectrometer design is demonstrated to exceed 10 000 (E/ΔE), using the well known Ne 1s-13p resonant Auger spectrum measured at a photon energy of 867.11 eV at a third-generation synchrotron radiation source. At the European XFEL, a width of ∼0.5 eV full width at half-maximum for a kinetic energy of 800 eV was demonstrated. It is expected that this linewidth can be reached over a broad range of kinetic energies. An array of these spectrometers, with different angular orientations, is tailored for the Atomic-like Quantum Systems endstation for high-resolution angle-resolved spectroscopy of gaseous samples.

6.
J Synchrotron Radiat ; 28(Pt 5): 1364-1376, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475285

RESUMO

The design of an angular array of electron time-of-flight (eToF) spectrometers is reported, intended for non-invasive spectral, temporal, and polarization characterization of single shots of high-repetition rate, quasi-continuous, short-wavelength free-electron lasers (FELs) such as the LCLS II at SLAC. This array also enables angle-resolved, high-resolution eToF spectroscopy to address a variety of scientific questions on ultrafast and nonlinear light-matter interactions at FELs. The presented device is specifically designed for the time-resolved atomic, molecular and optical science endstation (TMO) at LCLS II. In its final version, the spectrometer comprises up to 20 eToF spectrometers aligned to collect electrons from the interaction point, which is defined by the intersection of the incoming FEL radiation and a gaseous target. The full composition involves 16 spectrometers forming a circular equiangular array in the plane normal to the X-ray propagation and four spectrometers at 54.7° angle relative to the principle linear X-ray polarization axis with orientations in the forward and backward direction of the light propagation. The spectrometers are capable of independent and minimally chromatic electrostatic lensing and retardation, in order to enable simultaneous angle-resolved photo- and Auger-Meitner electron spectroscopy with high energy resolution. They are designed to ensure an energy resolution of 0.25 eV across an energy window of up to 75 eV, which can be individually centered via the adjustable retardation to cover the full range of electron kinetic energies relevant to soft X-ray methods, 0-2 keV. The full spectrometer array will enable non-invasive and online spectral-polarimetry measurements, polarization-sensitive attoclock spectroscopy for characterizing the full time-energy structure of SASE or seeded LCLS II pulses, and support emerging trends in molecular-frame spectroscopy measurements.

7.
Opt Express ; 29(23): 37429-37442, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808814

RESUMO

This contribution presents the initial characterization of the pump-probe performance at the Small Quantum Systems (SQS) instrument of the European X-ray Free Electron Laser. It is demonstrated that time-resolved experiments can be performed by measuring the X-ray/optical cross-correlation exploiting the laser-assisted Auger decay in neon. Applying time-of-arrival corrections based on simultaneous spectral encoding measurements allow us to significantly improve the temporal resolution of this experiment. These results pave the way for ultrafast pump-probe investigations of gaseous media at the SQS instrument combining intense and tunable soft X-rays with versatile optical laser capabilities.

8.
Phys Rev Lett ; 127(21): 213202, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860076

RESUMO

Here, we report on the nonlinear ionization of argon atoms in the short wavelength regime using ultraintense x rays from the European XFEL. After sequential multiphoton ionization, high charge states are obtained. For photon energies that are insufficient to directly ionize a 1s electron, a different mechanism is required to obtain ionization to Ar^{17+}. We propose this occurs through a two-color process where the second harmonic of the FEL pulse resonantly excites the system via a 1s→2p transition followed by ionization by the fundamental FEL pulse, which is a type of x-ray resonance-enhanced multiphoton ionization (REMPI). This resonant phenomenon occurs not only for Ar^{16+}, but also through lower charge states, where multiple ionization competes with decay lifetimes, making x-ray REMPI distinctive from conventional REMPI. With the aid of state-of-the-art theoretical calculations, we explain the effects of x-ray REMPI on the relevant ion yields and spectral profile.

9.
Phys Chem Chem Phys ; 23(32): 17248-17258, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34346440

RESUMO

The photoelectron circular dichroism (PECD) of the O 1s-photoelectrons of trifluoromethyloxirane (TFMOx) is studied experimentally and theoretically for different photoelectron kinetic energies. The experiments were performed employing circularly polarized synchrotron radiation and coincident electron and fragment ion detection using cold target recoil ion momentum spectroscopy. The corresponding calculations were performed by means of the single center method within the relaxed-core Hartree-Fock approximation. We concentrate on the energy dependence of the differential PECD of uniaxially oriented TFMOx molecules, which is accessible through the employed coincident detection. We also compare the results for the differential PECD of TFMOx to those obtained for the equivalent fragmentation channel and similar photoelectron kinetic energy of methyloxirane (MOx), studied in our previous work. Thereby, we investigate the influence of the substitution of the methyl group by the trifluoromethyl group at the chiral center on the molecular chiral response. Finally, the presently obtained angular distribution parameters are compared to those available in the literature.

10.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124863

RESUMO

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

11.
J Synchrotron Radiat ; 26(Pt 4): 1010-1016, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274422

RESUMO

Commissioning and first operation of an angle-resolved photoelectron spectrometer for non-invasive shot-to-shot diagnostics at the European XFEL soft X-ray beamline are described. The objective with the instrument is to provide the users and operators with reliable pulse-resolved information regarding photon energy and polarization that opens up a variety of applications for novel experiments but also hardware optimization.


Assuntos
Espectroscopia Fotoeletrônica/instrumentação , Raios X , Europa (Continente) , Fótons
12.
Nat Commun ; 14(1): 5738, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714859

RESUMO

Understanding the interaction of intense, femtosecond X-ray pulses with heavy atoms is crucial for gaining insights into the structure and dynamics of matter. One key aspect of nonlinear light-matter interaction was, so far, not studied systematically at free-electron lasers-its dependence on the photon energy. Here, we use resonant ion spectroscopy to map out the transient electronic structures occurring during the complex charge-up pathways of xenon. Massively hollow atoms featuring up to six simultaneous core holes determine the spectra at specific photon energies and charge states. We also illustrate how different X-ray pulse parameters, which are usually intertwined, can be partially disentangled. The extraction of resonance spectra is facilitated by the possibility of working with a constant number of photons per X-ray pulse at all photon energies and the fact that the ion yields become independent of the peak fluence beyond a saturation point. Our study lays the groundwork for spectroscopic investigations of transient atomic species in exotic, multiple-core-hole states that have not been explored previously.

13.
Sci Rep ; 12(1): 17809, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280680

RESUMO

X-ray free-electron lasers (XFELs) as the world's brightest light sources provide ultrashort X-ray pulses with a duration typically in the order of femtoseconds. Recently, they have approached and entered the attosecond regime, which holds new promises for single-molecule imaging and studying nonlinear and ultrafast phenomena such as localized electron dynamics. The technological evolution of XFELs toward well-controllable light sources for precise metrology of ultrafast processes has been, however, hampered by the diagnostic capabilities for characterizing X-ray pulses at the attosecond frontier. In this regard, the spectroscopic technique of photoelectron angular streaking has successfully proven how to non-destructively retrieve the exact time-energy structure of XFEL pulses on a single-shot basis. By using artificial intelligence techniques, in particular convolutional neural networks, we here show how this technique can be leveraged from its proof-of-principle stage toward routine diagnostics even at high-repetition-rate XFELs, thus enhancing and refining their scientific accessibility in all related disciplines.

14.
Commun Chem ; 5(1): 42, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36697752

RESUMO

Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.

15.
Sci Rep ; 11(1): 505, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436816

RESUMO

Molecules can sequentially absorb multiple photons when irradiated by an intense X-ray pulse from a free-electron laser. If the time delay between two photoabsorption events can be determined, this enables pump-probe experiments with a single X-ray pulse, where the absorption of the first photon induces electronic and nuclear dynamics that are probed by the absorption of the second photon. Here we show a realization of such a single-pulse X-ray pump-probe scheme on N[Formula: see text] molecules, using the X-ray induced dissociation process as an internal clock that is read out via coincident detection of photoelectrons and fragment ions. By coincidence analysis of the kinetic energies of the ionic fragments and photoelectrons, the transition from a bound molecular dication to two isolated atomic ions is observed through the energy shift of the inner-shell electrons. Via ab-initio simulations, we are able to map characteristic features in the kinetic energy release and photoelectron spectrum to specific delay times between photoabsorptions. In contrast to previous studies where nuclear motions were typically revealed by measuring ion kinetics, our work shows that inner-shell photoelectron energies can also be sensitive probes of nuclear dynamics, which adds one more dimension to the study of light-matter interactions with X-ray pulses.

16.
Commun Chem ; 4(1): 119, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36697819

RESUMO

Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa