Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Intensive Care ; 6(1): 24, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27025951

RESUMO

BACKGROUND: The changes in metabolic pathways and metabolites due to critical illness result in a highly complex and dynamic metabolic state, making safe, effective management of hyperglycemia and hypoglycemia difficult. In addition, clinical practices can vary significantly, thus making GC protocols difficult to generalize across units.The aim of this study was to provide a retrospective analysis of the safety, performance and workload of the stochastic targeted (STAR) glycemic control (GC) protocol to demonstrate that patient-specific, safe, effective GC is possible with the STAR protocol and that it is also generalizable across/over different units and clinical practices. METHODS: Retrospective analysis of STAR GC in the Christchurch Hospital Intensive Care Unit (ICU), New Zealand (267 patients), and the Gyula Hospital, Hungary (47 patients), is analyzed (2011-2015). STAR Christchurch (BG target 4.4-8.0 mmol/L) is also compared to the Specialized Relative Insulin and Nutrition Tables (SPRINT) protocol (BG target 4.4-6.1 mmol/L) implemented in the Christchurch Hospital ICU, New Zealand (292 patients, 2005-2007). Cohort mortality, effectiveness and safety of glycemic control and nutrition delivered are compared using nonparametric statistics. RESULTS: Both STAR implementations and SPRINT resulted in over 86 % of time per episode in the blood glucose (BG) band of 4.4-8.0 mmol/L. Patients treated using STAR in Christchurch ICU spent 36.7 % less time on protocol and were fed significantly more than those treated with SPRINT (73 vs. 86 % of caloric target). The results from STAR in both Christchurch and Gyula were very similar, with the BG distributions being almost identical. STAR provided safe GC with very few patients experiencing severe hypoglycemia (BG < 2.2 mmol/L, <5 patients, 1.5 %). CONCLUSIONS: STAR outperformed its predecessor, SPRINT, by providing higher nutrition and equally safe, effective control for all the days of patient stay, while lowering the number of measurements and interventions required. The STAR protocol has the ability to deliver high performance and high safety across patient types, time, clinical practice culture (Christchurch and Gyula) and clinical resources.

2.
J Diabetes Sci Technol ; 6(6): 1464-77, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23294794

RESUMO

INTRODUCTION: Stress-induced hyperglycemia increases morbidity and mortality. Tight control can reduce mortality but has proven difficult to achieve. The SPRINT (Specialized Relative Insulin and Nutrition Tables) protocol is the only protocol that reduced both mortality and hypoglycemia by modulating both insulin and nutrition, but it has not been tested in independent hospitals. METHODS: SPRINT was used for 12 adult intensive care unit patients (949 h) at Kálmán Pándy Hospital (Gyula, Hungary) as a clinical practice assessment. Insulin recommendations (0-6 U/h) were administered via constant infusion rather than bolus delivery. Nutrition was administered per local standard protocol, weaning parenteral to enteral nutrition, but was modulated per SPRINT recommendations. Measurement was every 1 to 2 h, per protocol. Glycemic performance is assessed by percentage of blood glucose (BG) measurements in glycemic bands for the cohort and per patient. Safety from hypoglycemia is assessed by numbers of patients with BG < 2.2 (severe) and %BG < 3.0 and < 4.0 mmol/liter (moderate and light). Clinical effort is assessed by measurements per day. Results are median (interquartile range). RESULTS: There were 742 measurements over 1088 h of control (16.4 measurements/day), which is similar to clinical SPRINT results (16.2/day). Per-patient hours of control were 65 (50-95) h. Initial per-patient BG was 10.5 (7.9-11.2) mmol/liter. All patients (100%) reached 6.1 mmol/liter. Cohort BG was 6.3 (5.5-7.5) mmol/liter, with 42.2%, 65.1% and 77.6% of BG in the 4.0-6.1, 4.0-7.0, and 4.0-8.0 mmol/liter bands. Per-patient, median percentage time in these bands was 40.2 (26.7-51.5)%, 62.5 (46.0-75.7)%, and 74.7 (61.6.8-87.8)%, respectively. No patients had BG < 2.2 mmol/liter, and the %BG < 4.0 mmol/liter was 1.9%. These results were achieved using 3.0 (3.0-5.0) U/h of insulin with 7.4 (4.4-10.2) g/h of dextrose administration (all sources) for the cohort. Per-patient median insulin administration was 3.0 (3.0-3.0) U/h and 7.1 (3.4-9.6) g/h dextrose. Higher carbohydrate nutrition formulas than were used in SPRINT are offset by slightly higher insulin administration in this study. CONCLUSIONS: The glycemic performance shows that using the SPRINT protocol to guide insulin infusions and nutrition administration provided very good glycemic control in initial pilot testing, with no severe hypoglycemia. The overall design of the protocol was able to be generalized with good compliance and outcomes across geographically distinct clinical units, patients, and clinical practice.


Assuntos
Árvores de Decisões , Hiperglicemia/prevenção & controle , Hipoglicemia/prevenção & controle , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Glicemia/análise , Cuidados Críticos/métodos , Nutrição Enteral , Feminino , Humanos , Hungria , Infusões Intravenosas , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa