Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 67(11): 1825-1838, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667047

RESUMO

As crop productivity is greatly influenced by weather conditions, many attempts have been made to estimate crop yields using meteorological data and have achieved great progress with the development of machine learning. However, most yield prediction models are developed based on observational data, and the utilization of climate model output in yield prediction has been addressed in very few studies. In this study, we estimate rice yields in South Korea using the meteorological variables provided by ERA5 reanalysis data (ERA-O) and its dynamically downscaled data (ERA-DS). After ERA-O and ERA-DS are validated against observations (OBS), two different machine learning models, Support Vector Machine (SVM) and Long Short-Term Memory (LSTM), are trained with different combinations of eight meteorological variables (mean temperature, maximum temperature, minimum temperature, precipitation, diurnal temperature range, solar irradiance, mean wind speed, and relative humidity) obtained from OBS, ERA-O, and ERA-DS at weekly and monthly timescales from May to September. Regardless of the model type and the source of the input data, training a model with weekly datasets leads to better yield estimates compared to monthly datasets. LSTM generally outperforms SVM, especially when the model is trained with ERA-DS data at a weekly timescale. The best yield estimates are produced by the LSTM model trained with all eight variables at a weekly timescale. Altogether this study shows the significance of high spatial and temporal resolution of input meteorological data in yield prediction, which can also serve to substantiate the added value of dynamical downscaling.

2.
Sci Adv ; 3(8): e1603322, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28782036

RESUMO

The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability.


Assuntos
Clima , Temperatura Alta , Populações Vulneráveis , Agricultura , Ásia , Mudança Climática , Humanos , Modelos Teóricos , Densidade Demográfica , Pobreza , Análise Espaço-Temporal , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa