Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38578562

RESUMO

Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation. Genes were compared with immune cell signatures to reveal the cellular landscape during exercise. Results show that the most significant modulated gene after RE was Folliculin Interacting Protein 2 (FNIP2) a crucial regulator in cellular homeostasis. Moreover, the transcriptome was stratified based on the expression of FNIP2 and the 203 genes common to the groups obtained based on sex and age. Gene ontology analysis highlighted the FLCN-FNIP1-FNIP2 complex, which exerts as a negative feedback loop to Pi3k-Akt-mTORC1 pathway. Furthermore, we highlighted that the young females exhibit a distinct innate immune cell activation signature compared to males after a RE session. Specifically, young females demonstrate a notable overlap with dendritic cells (DCs), M1 macrophages, M2 macrophages, and neutrophils, while young males overlap with M1 macrophages, M2 macrophages, and motor neurons. Interestingly, in elderly subjects, both sexes display M1 macrophage activation signatures. Comparison of young and elderly signatures reveals an increased M1 macrophage percentage in young subjects. Additionally, common genes were identified in both sexes across different age groups, elucidating biological functions related to cell remodeling and immune activation. This study underscores the intricate interplay between sex, age, and the immune response in muscle tissue following RE, offering potential directions for future research. Nevertheless, there is a need for further studies to delve deeper and confirm the dynamics of immune cells in response to exercise-induced muscle damage.

2.
Exp Cell Res ; 395(2): 112204, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32735892

RESUMO

BACKGROUND: SARS-CoV2, the agent responsible for the current pandemic, is also causing respiratory distress syndrome (RDS), hyperinflammation and high mortality. It is critical to dissect the pathogenetic mechanisms in order to reach a targeted therapeutic approach. METHODS: In the present investigation, we evaluated the effects of SARS-CoV2 on human bronchial epithelial cells (HBEC). We used RNA-seq datasets available online for identifying SARS-CoV2 potential genes target on human bronchial epithelial cells. RNA expression levels and potential cellular gene pathways have been analyzed. In order to identify possible common strategies among the main pandemic viruses, such as SARS-CoV2, SARS-CoV1, MERS-CoV, and H1N1, we carried out a hypergeometric test of the main genes transcribed in the cells of the respiratory tract exposed to these viruses. RESULTS: The analysis showed that two mechanisms are highly regulated in HBEC: the innate immunity recruitment and the disassembly of cilia and cytoskeletal structure. The granulocyte colony-stimulating factor (CSF3) and dynein heavy chain 7, axonemal (DNAH7) represented respectively the most upregulated and downregulated genes belonging to the two mechanisms highlighted above. Furthermore, the carcinoembryonic antigen-related cell adhesion molecule 7 (CEACAM7) that codifies for a surface protein is highly specific of SARS-CoV2 and not for SARS-CoV1, MERS-CoV, and H1N1, suggesting a potential role in viral entry. In order to identify potential new drugs, using a machine learning approach, we highlighted Flunisolide, Thalidomide, Lenalidomide, Desoximetasone, xylazine, and salmeterol as potential drugs against SARS-CoV2 infection. CONCLUSIONS: Overall, lung involvement and RDS could be generated by the activation and down regulation of diverse gene pathway involving respiratory cilia and muscle contraction, apoptotic phenomena, matrix destructuration, collagen deposition, neutrophil and macrophages recruitment.


Assuntos
Brônquios/metabolismo , Infecções por Coronavirus/genética , Redes Reguladoras de Genes , Pneumonia Viral/genética , Mucosa Respiratória/metabolismo , Transcriptoma , Brônquios/patologia , COVID-19 , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Infecções por Coronavirus/metabolismo , Descoberta de Drogas/métodos , Dineínas/genética , Dineínas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Imunidade Inata , Aprendizado de Máquina , Pandemias , Pneumonia Viral/metabolismo , Regulação para Cima
3.
Inflamm Res ; 69(9): 925-935, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32500186

RESUMO

OBJECTIVE AND DESIGN: Celiac disease (CD) is an intestinal inflammatory disorder of the small intestine. Gliadins are a component of gluten and there are three main types (α, γ, and ω). Recent studies indicate that gliadin peptides are able to activate an innate immune response. IL15 is a major mediator of the innate immune response and is involved in the early alteration of CD mucosa. The chitinase molecules are highly expressed by the innate immune cells during the inflammatory processes. MATERIAL OR SUBJECTS: We analyzed several microarray datasets of PBMCs and duodenum biopsies of CD patients and healthy control subjects (HCs). We verified the modulation CHI3L1 in CD patients and correlated the expression levels to the IL15, IL15Rα, TGM2, IFNγ, and IFNGR1/2. Duodenal biopsy samples belonged to nine active and nine treated children patients (long-term effects of gliadin), and 17 adult CD patients and 10 adults HCs. We also selected 169 samples of PBMCs from 127 CD patients on adherence to a gluten-free diet (GFD) for at least 2 years and 44 HCs. RESULTS: Our analysis showed that CHI3L1 and IL15Rα were significantly upregulated in adult and children's celiac duodenum biopsies. In addition, the two genes were correlated significantly both in children than in adults CD duodenum biopsies. No significant modulation was observed in PBMCs of adult CD patients compared to the HCs. The correlation analysis of the expression levels of CHI3L1 and IL15Rα compared to TGM showed significant values both in adults and in children duodenal biopsies. Furthermore, the IFNγ expression levels were positively correlated with CHI3L1 and IL15Rα. Receiver operating characteristic (ROC) analysis confirmed the diagnostic ability of CHI3L1 and IL15Rα to discriminate CD from HCs. CONCLUSION: Our data suggest a role for CHI3L1 underlying the pathophysiology of CD and represent a starting point aiming to inspire new investigation that proves the possible use of CHI3L1 as a diagnostic factor and therapeutic target.


Assuntos
Doença Celíaca/imunologia , Proteína 1 Semelhante à Quitinase-3/fisiologia , Duodeno/imunologia , Proteínas de Ligação ao GTP/fisiologia , Subunidade alfa de Receptor de Interleucina-15/fisiologia , Transglutaminases/fisiologia , Adulto , Biópsia , Doença Celíaca/etiologia , Criança , Proteína 1 Semelhante à Quitinase-3/análise , Proteína 1 Semelhante à Quitinase-3/genética , Duodeno/enzimologia , Duodeno/patologia , Humanos , Subunidade alfa de Receptor de Interleucina-15/análise , Subunidade alfa de Receptor de Interleucina-15/genética , Proteína 2 Glutamina gama-Glutamiltransferase
4.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331228

RESUMO

Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.


Assuntos
Imunomodulação/genética , Janus Quinase 2/genética , Mutação , Mielofibrose Primária/genética , Complexo de Endopeptidases do Proteassoma/genética , Alelos , Antígenos/metabolismo , Antígenos CD34/metabolismo , Células Cultivadas , Biologia Computacional/métodos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Modelos Biológicos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/imunologia , Mielofibrose Primária/metabolismo , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Curva ROC , Transdução de Sinais
5.
Eur J Nutr ; 58(2): 565-581, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29450729

RESUMO

PURPOSE: Osteoarthitis (OA) leads to progressive loss of articular cartilage, pain and joint disability. An acute injury constitutes an important risk factor for early OA, determining an inflammatory process responsible of cartilage degeneration and muscle atrophy, due to the joint pain and immobility. The study aims to assess the effects of conjugation of physical activity and diet enriched by olive tree compounds [extra virgin olive oil (EVOO) and olive leaf extract (OLE)], on the musculoskeletal system in OA rat model. METHODS: OA was induced by anterior cruciate ligament transection and confirmed by Mankin and OARSI scores. Rats were subjected to physical activity on treadmill 5 days a week for 10 min daily and fed with experimental diets (standard diet enriched with Sicilian EVOO, Tunisian EVOO and Tunisian EVOO-OLE) for 12 weeks. Immunohistochemistry was used to evaluate IL-6 and lubricin expression in cartilage tissue and ELISA was used to quantify these proteins in serum at different time points. Histology and histomorphometry analysis were done to valuate liver steatosis, muscle atrophy and cartilage pathological changes. RESULTS: Compared to the OA group, the experimental groups showed general increased lubricin and decreased IL-6 expression, significant muscle hypertrophy and no signs of liver steatosis, suggesting the beneficial effects of physical activity coupled with EVOO-enriched diets on rat articular cartilage. Interestingly, the best result was shown for Sicilian EVOO-enriched diet. CONCLUSION: In conclusion, the conjugation of physical activity and EVOO-enriched diet determines a significant articular cartilage recovery process in early OA.


Assuntos
Dieta Mediterrânea , Fígado Gorduroso/terapia , Atrofia Muscular/terapia , Olea , Azeite de Oliva/farmacologia , Osteoartrite/terapia , Condicionamento Físico Animal , Animais , Cartilagem Articular , Modelos Animais de Doenças , Masculino , Azeite de Oliva/administração & dosagem , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
6.
Int J Mol Sci ; 20(3)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691048

RESUMO

The purpose of this study was to investigate the influence of moderate physical activity (MPA) on the expression of osteoarthritis (OA)-related (IL-1ß, IL-6, TNF-α, MMP-13) and anti-inflammatory and chondroprotective (IL-4, IL-10, lubricin) biomarkers in the synovium of an OA-induced rat model. A total of 32 rats were divided into four groups: Control rats (Group 1); rats performing MPA (Group 2); anterior cruciate ligament transection (ACLT)-rats with OA (Group 3); and, ACLT-rats performing MPA (Group 4). Analyses were performed using Hematoxylin & Eosin (H & E) staining, histomorphometry and immunohistochemistry. In Group 3, OA biomarkers were significantly increased, whereas, IL-4, IL-10, and lubricin were significantly lower than in the other experimental groups. We hypothesize that MPA might partake in rescuing type B synoviocyte dysfunction at the early stages of OA, delaying the progression of the disease.


Assuntos
Lesões do Ligamento Cruzado Anterior/complicações , Citocinas/metabolismo , Osteoartrite do Joelho/prevenção & controle , Condicionamento Físico Animal/métodos , Sinoviócitos/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Masculino , Osteoartrite do Joelho/metabolismo , Ratos , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Exp Cell Res ; 357(2): 222-235, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28529106

RESUMO

The poor self-repair capacity of cartilage tissue in degenerative conditions, such as osteoarthritis (OA), has prompted the development of a variety of therapeutic approaches, such as cellular therapies and tissue engineering based on the use of mesenchymal stem cells (MSCs). The aim of this study is to demonstrate, for the first time, that the chondrocytes differentiated from rat adipose tissue derived-MSCs (AMSCs), are able to constitute a morphologically and biochemically healthy hyaline cartilage after 6 weeks of culture on a Collagen Cell Carrier (CCC) scaffold. In this study we evaluated the expression of some osteoblasts (Runt-related transcription factor 2 (RUNX2) and osteocalcin), chondrocytes (collagen I, II and lubricin) and apoptosis (caspase-3) biomarkers in undifferentiated AMSCs, differentiated AMSCs in chondrocytes cultured in monolayer and AMSCs-derived chondrocytes seeded on CCC scaffolds, by different techniques such as immunohistochemistry, ELISA, Western blot and gene expression analyses. Our results showed the increased expression of collagen II and lubricin in AMSCs-derived chondrocytes cultured on CCC scaffolds, whereas the expression of collagen I, RUNX2, osteocalcin and caspase-3 resulted decreased, when compared to the controls. In conclusion, this innovative basic study could be a possible key for future therapeutic strategies for articular cartilage restoration through the use of CCC scaffolds, to reduce the morbidity from acute cartilage injuries and degenerative joint diseases.


Assuntos
Apoptose/fisiologia , Cartilagem Articular/citologia , Condrócitos/citologia , Condrogênese/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Ratos Wistar , Regeneração/fisiologia , Engenharia Tecidual/métodos
8.
Int J Mol Sci ; 19(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227596

RESUMO

BACKGROUND: Juvenile dermatomyositis (JDM) is a systemic, autoimmune, interferon (IFN)-mediated inflammatory muscle disorder that affects children younger than 18 years of age. JDM primarily affects the skin and the skeletal muscles. Interestingly, the role of viral infections has been hypothesized. Mammalian 2'-5'-oligoadenylate synthetase (OAS) genes have been thoroughly characterized as components of the IFN-induced antiviral system, and they are connected to several innate immune-activated diseases. The main purpose of the paper is to define the potential interrelationship between the OAS gene family network and the molecular events that characterize JDM along with double-stranded RNA (dsRNA) molecular pathways. METHODS: We analyzed three microarray datasets obtained from the NCBI in order to verify the expression levels of the OAS gene family network in muscle biopsies (MBx) of JDM patients compared to healthy controls. Furthermore, From GSE51392, we decided to select significant gene expression profiles of primary nasal and bronchial epithelial cells isolated from healthy subjects and treated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic analog of double-stranded RNA (dsRNA), a molecular pattern associated with viral infection. RESULTS: The analysis showed that all OAS genes were modulated in JDM muscle biopsies. Furthermore, 99% of OASs gene family networks were significantly upregulated. Of importance, 39.9% of modulated genes in JDM overlapped with those of primary epithelial cells treated with poly(I:C). Moreover, the microarray analysis showed that the double-stranded dsRNA virus gene network was highly expressed. In addition, we showed that the innate/adaptive immunity markers were significantly expressed in JDM muscles biopsies. and that their levels were positively correlated to OAS gene family expression. CONCLUSION: OAS gene expression is extremely modulated in JDM as well as in the dsRNA viral gene network. These data lead us to speculate on the potential involvement of a viral infection as a trigger moment for this systemic autoimmune disease. Further in vitro and translational studies are needed to verify this hypothesis in order to strategically plan treatment interventions.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Dermatomiosite/genética , Redes Reguladoras de Genes , Família Multigênica , Transcriptoma , 2',5'-Oligoadenilato Sintetase/imunologia , Imunidade Adaptativa , Adolescente , Dermatomiosite/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Masculino , Poli I-C/imunologia , Infecções por Vírus de RNA/imunologia , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia
9.
Exp Cell Res ; 346(1): 91-8, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27349291

RESUMO

Angiogenesis plays a crucial role in progression of pleural malignant mesothelioma. A significantly increased incidence of pleural mesothelioma has been attributed to exposure to fluoro-edenite, a fibrous amphibole extracted from a local stone quarry. In this study, we have investigated the expression of CD68-positive macrophages, tryptase-positive mast cells and CD31 positive areas, as expression of microvascular density, in lung tissue of sheeps exposed to fluoro-edenite fibers vs controls, by immunohistochemical, morphometric and Western blot analysis. The result have evidenced a significant increase in the expression of CD68-positive macrophages, tryptase-positive mast cells as well as a significant increase in microvascular density evaluated as CD31 positive areas in lung tissue of of sheeps exposed to fluoro-edenite fibers vs controls. These data confirmed the important role played by tumor microenvironment components, including macrophages and mast cells, in favour of angiogenesis in pleural mesothelioma induced by fluoro-edenite exposure.


Assuntos
Amiantos Anfibólicos/toxicidade , Pulmão/patologia , Macrófagos/metabolismo , Mastócitos/metabolismo , Neovascularização Fisiológica , Animais , Antígenos CD/metabolismo , Western Blotting , Densitometria , Feminino , Imuno-Histoquímica , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Neovascularização Fisiológica/efeitos dos fármacos , Ovinos , Coloração e Rotulagem , Triptases/metabolismo , Tubulina (Proteína)/metabolismo
10.
Cell Tissue Res ; 362(1): 45-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25948484

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in humans, whose invasiveness and proliferation are associated with poor prognosis. Matrix metalloproteinases (MMPs) and the related family of "a disintegrin and metalloproteinase" (ADAM) both contribute to increase cell invasion, and its substrate N-cadherin is involved in proliferation and metastatic capacities of tumor cells. However, these molecular determinants of aggressiveness have not been adequately characterized in GBM. In an attempt to better define these pathogenetic signatures, in the present study we evaluated the comparative expression of two main MMPs (MMP-2 and -9), as well as of ADAM-10 and N-cadherin in surgical samples from patients diagnosed with WHO grade IV GBM (n = 25) and in cortical tissue specimens obtained from untreatable epileptic patients (controls, n = 8) through a series of histopathological, immunohistochemical and biochemical tests. Our studies revealed that both MMP-2 and -9 immunoreactivities (IRs) were upregulated in 13 of 25 (52 %) and 19 of 25 (76 %) GBMs, respectively, and the extent of the increase was highly significant with respect to controls (p < 0.001). ADAM-10 IR was also found to be increased (p < 0.001) in 16 of 25 GBM specimens (64 %). Conversely, N-cadherin IR was remarkably decreased (p < 0.001) in almost the totality of tumor samples (22 of 25, 88 %). A similar trend was also obtained at the mRNA and protein level by qPCR and western blot analyses, respectively. Collectively, the current study provides a comprehensive molecular portrayal of some of the major pathological hallmarks of GBM aggressiveness, which could be exploitable as potential targets for a new therapeutic approach.


Assuntos
Proteínas ADAM/biossíntese , Secretases da Proteína Precursora do Amiloide/biossíntese , Antígenos CD/biossíntese , Biomarcadores Tumorais/biossíntese , Neoplasias Encefálicas/metabolismo , Caderinas/biossíntese , Glioblastoma/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Proteínas de Membrana/biossíntese , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Antígenos CD/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Caderinas/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Proteínas de Membrana/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
11.
Eur J Nutr ; 53(1): 297-308, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23644750

RESUMO

PURPOSE: Tryptophan is an essential amino acid, precursor of serotonin. Serotonin (5HT) regulates the secretion of pituitary growth hormone (GH), which in turn stimulates the liver to produce insulin-like growth factor-I (IGF-I) that is necessary for development and growth. The aim of our study was to investigate the effects of an excess of tryptophan in the diet of pregnant rats on the differentiation of skeletal muscle tissue. METHODS: We conducted an immunohistochemical study on the IGF-I expression in hepatic and muscle tissues in offspring, and then, we associated this molecular data with morphological effects on the structure of the muscle fibers and hepatic tissue at different postnatal weeks, from birth to sexual maturity. Measurements of 5HT, GH in blood, and of tryptophan hydroxylase (Tph) activity in gastrointestinal tracts tissue were also taken. RESULTS: Hyperserotonemia and higher values of Tph activity were detected in both pregnant rats and pups. Very low levels of GH were detected in experimental pups. Morphological alterations of the muscle fibers and lower IGF-I expression in hepatic and muscle tissue in pups were found. CONCLUSIONS: Our data suggest that an excess of tryptophan in the diet causes hyperserotonemia in fetus. Hyperserotonemia results in an excess of serotonin in the brain where it has an adverse effect on the development of serotonergic neurons. The affected neurons do not regulate optimally the secretion of pituitary GH that consequently decreases. This limits stimulation in the liver to produce IGF-I, crucial for development and growth of pups.


Assuntos
Animais Recém-Nascidos , Músculo Esquelético/crescimento & desenvolvimento , Triptofano/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Serotonina/sangue , Triptofano Hidroxilase/metabolismo
12.
Curr Neuropharmacol ; 21(3): 740-760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36475335

RESUMO

BACKGROUND: Cholinergic hypofunction and sleep disturbance are hallmarks of Alzheimer's disease (AD), a progressive disorder leading to neuronal deterioration. Muscarinic acetylcholine receptors (M1-5 or mAChRs), expressed in hippocampus and cerebral cortex, play a pivotal role in the aberrant alterations of cognitive processing, memory, and learning, observed in AD. Recent evidence shows that two mAChRs, M1 and M3, encoded by CHRM1 and CHRM3 genes, respectively, are involved in sleep functions and, peculiarly, in rapid eye movement (REM) sleep. METHODS: We used twenty microarray datasets extrapolated from post-mortem brain tissue of nondemented healthy controls (NDHC) and AD patients to examine the expression profile of CHRM1 and CHRM3 genes. Samples were from eight brain regions and stratified according to age and sex. RESULTS: CHRM1 and CHRM3 expression levels were significantly reduced in AD compared with ageand sex-matched NDHC brains. A negative correlation with age emerged for both CHRM1 and CHRM3 in NDHC but not in AD brains. Notably, a marked positive correlation was also revealed between the neurogranin (NRGN) and both CHRM1 and CHRM3 genes. These associations were modulated by sex. Accordingly, in the temporal and occipital regions of NDHC subjects, males expressed higher levels of CHRM1 and CHRM3, respectively, than females. In AD patients, males expressed higher levels of CHRM1 and CHRM3 in the temporal and frontal regions, respectively, than females. CONCLUSION: Thus, substantial differences, all strictly linked to the brain region analyzed, age, and sex, exist in CHRM1 and CHRM3 brain levels both in NDHC subjects and in AD patients.


Assuntos
Doença de Alzheimer , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Sono , Encéfalo , Biópsia , Receptor Muscarínico M1/genética , Receptor Muscarínico M3
13.
Geroscience ; 45(1): 523-541, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36136224

RESUMO

Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.


Assuntos
Doença de Alzheimer , Quitinases , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transcriptoma/genética , Encéfalo/metabolismo , Biomarcadores/metabolismo , Quitinases/genética , Quitinases/metabolismo
14.
J Neurol Sci ; 446: 120562, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706688

RESUMO

Neurological complications of AIDS (NeuroAIDS) include primary HIV-associated neurocognitive disorder (HAND). OAS3 is an enzyme belonging to the 2', 5' oligoadenylate synthase family induced by type I interferons and involved in the degradation of both viral and endogenous RNA. Here, we used microarray datasets from NCBI of brain samples of non-demented HIV-negative controls (NDC), HIV, deceased patients with HAND and encephalitis (HIVE) (treated and untreated with antiretroviral therapy, ART), and with HAND without HIVE. The HAND/HIVE patients were stratified according to the OAS3 gene expression. The genes positively and negatively correlated to the OAS3 gene expression were used to perform a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to sixteen signatures. Expression analysis revealed significantly higher OAS3 expression in HAND/HIVE and HAND/HIVE/ART compared with NDC. OAS3 expressed an excellent diagnostic ability to discriminate NDC from HAND/HIVE, HAND from HAND/HIVE, HAND from HAND/HIVE/ART, and HIV from HAND/HIVE. Noteworthy, OAS3 expression levels in the brains of HAND/HIVE patients were positively correlated with viral load in both peripheral blood and cerebrospinal fluid (CSF). Furthermore, deconvolution analysis revealed that the genes positively correlated to OAS3 expression were associated with inflammatory signatures. Neuronal activation profiles were significantly activated by the genes negatively correlated to OAS3 expression levels. Moreover, gene ontology analysis performed on genes characterizing the microglia signature highlighted an immune response as a main biological process. According to our results, genes positively correlated to OAS3 gene expression in the brains of HAND/HIVE patients are associated with inflammatory transcriptomic signatures and likely worse cognitive impairment.


Assuntos
Infecções por HIV , HIV , Humanos , HIV/genética , HIV/metabolismo , Transcriptoma , Infecções por HIV/complicações , Encéfalo/metabolismo , Transtornos Neurocognitivos/complicações , Transtornos Neurocognitivos/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo
15.
Sci Rep ; 13(1): 1490, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707698

RESUMO

Colorectal Cancer (CRC) is one of the most common cancers accounting for 1.8 million new cases worldwide every year. Therefore, the identification of new potential therapeutic targets represents a continuous challenge to improve survival and quality of CRC patient's life. We performed a microarray analysis dataset consisting of colon biopsies of healthy subjects (HS) and CRC patients. These results were further confirmed in a clinical setting evaluating a series of CRC patients to assess the expression of Resistin-Like Beta (RETNLB) and to correlate it with their clinical data. Our results showed a significant reduction of RETNLB expression in CRC biopsies compared to the HS mucosa. Furthermore, such reduction was significantly associated with the TNM grade and patients' age. Furthermore, a significantly positive correlation was found within mutated subjects for KRAS, TP53, and BRAF. In particular, patients with poor prognosis at 5 years exhibited RETNLB lower levels. In-silico analysis data were confirmed by histochemical analysis in a series of CRC patients recruited by our group. The results obtained provided that RETNLB low levels are associated with an unfavorable prognosis in CRC patients and its expression is also dependent on adjuvant therapy. Further studies are warranted in order to evaluate the molecular mechanisms underlying the role of RETNLB in CRC progression.


Assuntos
Neoplasias Colorretais , Humanos , Biópsia , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Prognóstico , Resistina , Taxa de Sobrevida
16.
J Neuroimmunol ; 373: 577977, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228382

RESUMO

Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of not demented healthy controls (NDHC) who died from causes not attributable to neurodegenerative disorders (n = 460), and of deceased patients suffering from Alzheimer's disease (AD) (n = 697). The NDHC and AD patients were stratified according to CHI3L1 expression levels as a cut-off. We identified two groups both males and females, subsequently used for our statistical comparisons: the high CHI3L1 expression group (HCEG) and the low CHI3L1 expression group (LCEG). Comparing HCEG to LCEG, we attained four signatures according to the sex of patients, in order to identify the healthy and AD brain cellular architecture, performing a genomic deconvolution analysis. We used neurological signatures (NS) belonging to six neurological cells populations and nine signatures that included the main physiological neurological processes. We discovered that, in the brains of NDHC the high expression levels of CHI3L1 were associated with astrocyte activation profile, while in AD males and females we showed an inflammatory profile microglia-mediated. The low CHI3L1 brain expression levels in NDHC and AD patients highlighted a neuronal activation profile. Furthermore, using drugs opposing CHI3L1 transcriptomic signatures, we found a specific drug profile for AD males and females characterized by high levels of CHI3L1 composed of fostamatinib, rucaparib, cephaeline, prednisolone, and dinoprostone. Brain levels of CHI3L1 in AD patients represent a biological signature that allows distinguishing between males and females and their likely cellular brain architecture.


Assuntos
Doença de Alzheimer , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transcriptoma , Encéfalo/metabolismo , Microglia/metabolismo , Envelhecimento , Proteína 1 Semelhante à Quitinase-3/genética
17.
Pathol Res Pract ; 237: 154038, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932496

RESUMO

Colorectal cancer (CRC) is one of the most common cancers in the world. Here, we undertook an analysis of microarray datasets consisting of colon biopsies of healthy subjects and of patients affected by CRC, in order to analyze the expression levels of Chitinase domain-containing protein 1 (CHID1) and to correlate them with the clinical data available in the datasets. Analysis of expression levels showed a significant increase of CHID1 in CRC biopsies compared to the mucosa of healthy subjects. Patients' stratification by TNM staging revealed significant increases in CHID1 expression levels as the disease progressed. Furthermore, we found that mutated BRAF patients exhibit higher levels of CHID1 expression. Patients with a poor surviving prognosis at 5 years expressed high levels of CHID1 compared to wild-type. The histochemical analysis carried out by the Human Protein Atlas web tool documented moderate to strong-intensity staining detection of CHID1 protein in CRC biopsies. Furthermore, CRC patients were selected and clustered into two groups, high and low CHID1 expression levels (HCEL and LCEL). We obtained two signatures, the genes significant positive (GSPC-CHID1) and negative (GSNC-CHID1) correlated to CHID1 expression levels. The genomic deconvolution analysis between the GSPC-CHID1, GSNC-CHID1, and 17 cell immunological signatures, highlighted the potential infiltration of Macrophages M0 in HCEL patients, and potential infiltration of Macrophages M1 cells in LCEL patients. In addition, the signature GSPC-CHID1 expressed unfavorable genes to the CRC patient's survival. Mirror results were obtained for the GSNC-CHID1 signature. From the outcome of our investigation, it is possible to conclude that HCEL are associated with an unfavorable prognosis for CRC patients.


Assuntos
Quitinases , Neoplasias Colorretais , Humanos , Taxa de Sobrevida , Neoplasias Colorretais/patologia , Quitinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Prognóstico , Macrófagos/patologia , Proteínas de Transporte/genética
18.
Biomedicines ; 10(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36140348

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motoneurons (MNs) with a fatal outcome. The typical degeneration of cortico-spinal, spinal, and bulbar MNs, observed in post-mortem biopsies, is associated with the activation of neuroimmune cells. GJA1, a member of the connexins (Cxs) gene family, encodes for connexin 43 (Cx43), a core gap junctions (GJs)- and hemichannels (HCs)-forming protein, involved in cell death, proliferation, and differentiation. Recently, Cx43 expression was found to play a role in ALS pathogenesis. Here, we used microarray and RNA-seq datasets from the NCBI of the spinal cord of control (NDC) and ALS patients, which were stratified according to the GJA1 gene expression. Genes that positively or negatively correlated to GJA1 expression were used to perform a genomic deconvolution analysis (GDA) using neuroimmune signatures. Expression analysis revealed a significantly higher GJA1 expression in the MNs of ALS patients as compared to NDC. Gene deconvolution analysis revealed that positively correlated genes were associated with microglia activation, whereas negatively correlated genes were associated with neuronal activation profiles. Moreover, gene ontology analysis, performed on genes characterizing either microglia or neuronal signature, indicated immune activation or neurogenesis as main biological processes. Finally, using a synthetic analysis of drugs able to revert the GJA1 transcriptomic signatures, we found a specific drug profile for ALS patients with high GJA1 expression levels, composed of amlodipine, sertraline, and prednisolone. In conclusion, our exploratory study suggests GJA1 as a new neuro-immunological gene correlated to microglial cellular profile in the spinal cord of ALS patients. Further studies are warranted to confirm these results and to evaluate the therapeutic potential of drugs able to revert typical GJA1/CX43 signature in ALS patients.

19.
J Mol Neurosci ; 71(5): 1046-1060, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33057964

RESUMO

Brain regions such as the cerebellum (CB) have been neglected for a long time in the study of Alzheimer's disease (AD) pathogenesis. In reference to a new emerging hypothesis according to which there is an altered cerebellar synaptic processing in AD, we verified the possible role played by new biomarkers in the CB of AD patients compared with not-demented healthy control subjects (NDHS). Using a bioinformatics approach, we have collected several microarray datasets and obtained 626 cerebella sample biopsies belonging to subjects who did not die from causes related to neurological diseases and 199 cerebella belonging to AD. The analysis of logical relations between the transcriptome dataset highlighted guanine nucleotide-binding protein (G protein) gamma 13 (GNG13) as a potential new biomarker for Purkinje cells (PCs). We have correlated GNG13 expression levels with already widely existing bibliography of PC marker genes, such as Purkinje cell protein 2 (PCP2), Purkinje cell protein 4 (PCP4), and cerebellin 3 (CBLN3). We showed that expression levels of GNG13 and PCP2, PCP4, and CBLN3 were significantly correlated with each other in NDHS and in AD and significantly reduced in AD patients compared with NDHS subjects. In addition, we highlighted a negative correlation between the expression levels of PC biomarkers and age. From the outcome of our investigation, it is possible to conclude that the identification of GNG13 as a potentially biomarker in PCs represents also a state of health of CB, in association with the expression of PCP2, PCP4, and CBLN3.


Assuntos
Doença de Alzheimer/genética , Cerebelo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Cerebelo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
20.
Front Pharmacol ; 12: 684680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025440

RESUMO

This study aimed to investigate the high glucose damage on human retinal pigment epithelial (RPE) cells, the role of p38 MAPK signaling pathway and how dimethyl fumarate can regulate that. We carried out in vitro studies on ARPE-19 cells exposed to physiological and high glucose (HG) conditions, to evaluate the effects of DMF on cell viability, apoptosis, and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1ß, and VEGF. Our data have demonstrated that DMF treatment attenuated HG-induced apoptosis, as confirmed by reduction of BAX/Bcl-2 ratio. Furthermore, in RPE cells exposed to HG we observed a significant increase of iNOS, COX-2, and IL-1ß expression, that was reverted by DMF treatment. Moreover, DMF reduced the VEGF levels elicited by HG, inhibiting p38 MAPK signaling pathway. The present study demonstrated that DMF provides a remarkable protection against high glucose-induced damage in RPE cells through p38 MAPK inhibition and the subsequent down-regulation of VEGF levels, suggesting that DMF is a small molecule that represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa