Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003603

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by a constant accumulation of lipids in the liver. This hepatic lipotoxicity is associated with a dysregulation of the first step in lipid catabolism, known as beta oxidation, which occurs in the mitochondrial matrix. Eventually, this dysregulation will lead to mitochondrial dysfunction. To evaluate the possible involvement of mitochondrial DNA methylation in this lipid metabolic dysfunction, we investigated the functional metabolic effects of mitochondrial overexpression of CpG (MSssI) and GpC (MCviPI) DNA methyltransferases in relation to gene expression and (mito)epigenetic signatures. Overall, the results show that mitochondrial GpC and, to a lesser extent, CpG methylation increase bile acid metabolic gene expression, inducing the onset of cholestasis through mito-nuclear epigenetic reprogramming. Moreover, both increase the expression of metabolic nuclear receptors and thereby induce basal overactivation of mitochondrial respiration. The latter promotes mitochondrial swelling, favoring lipid accumulation and metabolic-stress-induced mitophagy and autophagy stress responses. In conclusion, both mitochondrial GpC and CpG methylation create a metabolically challenging environment that induces mitochondrial dysfunction, which may contribute to the progression of MASLD.


Assuntos
Fígado Gorduroso , Mitofagia , Humanos , Mitofagia/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Fígado Gorduroso/metabolismo , Estresse Fisiológico , Lipídeos
2.
BMC Microbiol ; 18(Suppl 1): 179, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470182

RESUMO

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.


Assuntos
Insetos Vetores/fisiologia , Simbiose/genética , Moscas Tsé-Tsé/parasitologia , Animais , Feminino , Controle de Insetos/métodos , Controle de Insetos/organização & administração , Insetos Vetores/parasitologia , Microbiota , Trypanosoma/genética , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/fisiologia
3.
J Gen Virol ; 98(5): 890-891, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28555546

RESUMO

The Iridoviridae is a family of large, icosahedral viruses with double-stranded DNA genomes ranging in size from 103 to 220 kbp. Members of the subfamily Alphairidovirinae infect ectothermic vertebrates (bony fish, amphibians and reptiles), whereas members of the subfamily Betairidovirinae mainly infect insects and crustaceans. Infections can be either covert or patent, and in vertebrates they can lead to high levels of mortality among commercially and ecologically important fish and amphibians. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Iridoviridae, which is available at www.ictv.global/report/iridoviridae.


Assuntos
Iridoviridae/classificação , Iridoviridae/isolamento & purificação , Anfíbios/virologia , Animais , Crustáceos/virologia , DNA Viral/genética , Peixes/virologia , Especificidade de Hospedeiro , Insetos/virologia , Iridoviridae/ultraestrutura , Répteis/virologia , Vírion/ultraestrutura
4.
J Gen Virol ; 97(4): 1010-1031, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801744

RESUMO

Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies.


Assuntos
Vírus de DNA/genética , DNA Viral/genética , Genoma Viral , Vírus de Insetos/genética , Transcriptoma , Moscas Tsé-Tsé/virologia , Animais , Composição de Bases , Sequência de Bases , Mapeamento Cromossômico , Vírus de DNA/classificação , Vírus de DNA/patogenicidade , Tamanho do Genoma , Vírus de Insetos/classificação , Vírus de Insetos/patogenicidade , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteômica/métodos , Glândulas Salivares/virologia , Proteínas do Core Viral , Fatores de Virulência
5.
J Gen Virol ; 96(Pt 1): 196-205, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281564

RESUMO

Invertebrate iridescent virus 6 (IIV-6) is a nucleocytoplasmic virus with a ~212 kb linear dsDNA genome that encodes 215 putative ORFs. The IIV-6 virion-associated proteins consist of at least 54 virally encoded proteins. One of our previous findings showed that most of these proteins are encoded by genes from the early transcriptional class. This indicated that these structural proteins may not only function in the formation of the virion, but also in the initial stage of viral infection. In the current study, we followed the protein expression profile of IIV-6 over time in Drosophila S2 cells by label-free quantification using a proteomic approach. A total of 95 virally encoded proteins were detected in infected cells, of which 37 were virion proteins. The expressed IIV-6 virion proteins could be categorized into three main clusters based on their expression profiles: proteins with stably low expression levels during infection, proteins with exponentially increasing expression levels during infection and proteins that were initially highly abundant, but showed slightly reduced levels after 48 h post-infection. We thus provided novel information on the kinetics of virion and infected cell-specific protein levels that assists in our understanding of gene regulation in this lesser-known DNA virus model.


Assuntos
Invertebrados/virologia , Iridovirus/genética , Iridovirus/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Vírus de DNA/genética , Drosophila/virologia , Genoma Viral/genética , Proteômica/métodos , Transcriptoma/genética , Vírion/genética , Vírion/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(51): E3604-13, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23151511

RESUMO

RNA viruses in insects are targets of an RNA interference (RNAi)-based antiviral immune response, in which viral replication intermediates or viral dsRNA genomes are processed by Dicer-2 (Dcr-2) into viral small interfering RNAs (vsiRNAs). Whether dsDNA virus infections are controlled by the RNAi pathway remains to be determined. Here, we analyzed the role of RNAi in DNA virus infection using Drosophila melanogaster infected with Invertebrate iridescent virus 6 (IIV-6) as a model. We show that Dcr-2 and Argonaute-2 mutant flies are more sensitive to virus infection, suggesting that vsiRNAs contribute to the control of DNA virus infection. Indeed, small RNA sequencing of IIV-6-infected WT and RNAi mutant flies identified abundant vsiRNAs that were produced in a Dcr-2-dependent manner. We observed a highly uneven distribution with strong clustering of vsiRNAs to small defined regions (hotspots) and modest coverage at other regions (coldspots). vsiRNAs mapped in similar proportions to both strands of the viral genome, suggesting that long dsRNA derived from convergent overlapping transcripts serves as a substrate for Dcr-2. In agreement, strand-specific RT-PCR and Northern blot analyses indicated that antisense transcripts are produced during infection. Moreover, we show that vsiRNAs are functional in silencing reporter constructs carrying fragments of the IIV-6 genome. Together, our data indicate that RNAi provides antiviral defense against dsDNA viruses in animals. Thus, RNAi is the predominant antiviral defense mechanism in insects that provides protection against all major classes of viruses.


Assuntos
Vírus de DNA/genética , Regulação Viral da Expressão Gênica , Interferência de RNA , Animais , Antivirais/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Inativação Gênica , Genoma Viral , Cinética , Modelos Genéticos , Mutação , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/metabolismo , Análise de Sequência de DNA , Wolbachia/metabolismo
7.
Int J Syst Evol Microbiol ; 64(Pt 10): 3384-3389, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25013228

RESUMO

A bacterium (strain Tp2(T)) was isolated from a caterpillar of the pine processionary moth, Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera: Thaumetopoeidae), a destructive pine forest pest. The bacterium is a Gram-stain-positive, red-pigmented coccus, oxidase-negative, nitrate-reducing, non-motile and non-spore-forming. Strain Tp2(T) was subjected to a taxonomic study using polyphasic approach that included morphological and biochemical characterizations, 16S rRNA gene sequence analysis, DNA-DNA hybridization, DNA G+C content analysis, comparative fatty acid profiles, and analyses of quinones and polar lipids. The 16S rRNA gene sequence of strain Tp2(T) revealed that Arthrobacter agilis DSM 20550(T) was the closest known strain (98% 16S rRNA gene sequence similarity). DNA-DNA hybridization of A. agilis DSM 20550(T) and strain Tp2(T) resulted in a DNA-DNA relatedness value of 11.9% (20.2% reciprocal). The DNA base composition of strain Tp2(T) was 69.5 mol%, which is consistent with the other recognized members of Actinobacteria that have a high G+C content in their genome. The polar lipid pattern of strain Tp2(T) consisted of diphosphatidylglycerol (major), phosphatidylglycerol and phosphatidylinositol and unknown glycolipids. The cellular fatty acids were anteiso C15:0 and anteiso C17:0 and the major menaquinone was MK-9(II-H2). The peptidoglycan type was A3α with an L-Lys-L-Thr-L-Ala3 interpeptide bridge. The above-mentioned characterization qualifies strain Tp2(T) as genotypically and phenotypically distinct from closely related species of the genus Arthrobacter with validly published names. Strain Tp2(T) is therefore proposed to represent a novel species of the genus Arthrobacter, described as Arthrobacter pityocampae sp. nov. The type strain is Tp2(T) ( = DSM 21719(T) = NCCB 100254(T)).


Assuntos
Arthrobacter/classificação , Mariposas/microbiologia , Filogenia , Animais , Arthrobacter/genética , Arthrobacter/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Larva/microbiologia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turquia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
Antioxidants (Basel) ; 13(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39061888

RESUMO

Biodiesel has several drawbacks, such as being prone to oxidation, having reduced stability, and having limited storage time. Antioxidants compatible with biodiesel are being used to address its drawbacks. Utilizing antioxidants effectively improves the quality of biodiesel. Enhancing the quality of biodiesel for use as a clean energy source benefits both the global economy and ecology. Therefore, we believe that our work will contribute to the advancement of the biodiesel industry worldwide. This study used blends consisting of 20% biodiesel and 80% diesel fuel. Isatin-thiosemicarbazones were tested as additives in blends at a concentration of 3000 parts per million (ppm) using an oxifast device and were compared with the chemical antioxidant Trolox. FT-IR, DSC, and TGA were used to characterize these samples. DSC measured sample crystallization temperatures (Tc). Samples with antioxidants showed decreased values compared to the non-antioxidant diesel sample D100. Several DSC tests were conducted to determine the antioxidant strengths of various samples. The results show that the FT-IR spectrum's antioxidant effect regions grow clearer with antioxidants. The extra antioxidant is effective. Biodiesel's oxidative stability improves with isatin-thiosemicarbazones at varying concentrations. The kinetics of thermal decomposition of isatin-thiosemicarbazones under non-isothermal conditions were determined using the Kissinger, Ozawa, and Boswell techniques. The activation energies of compounds 1 and 2 were calculated as 137-147 kJ mol-1 and 173-183 kJ mol-1, respectively.

9.
J Gen Virol ; 94(Pt 1): 187-192, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052394

RESUMO

The temporal expression of the 54 Chilo iridescent virus (CIV) virion protein genes was investigated by combining drug treatments that inhibit protein or DNA synthesis and an RT-PCR strategy particularly suitable for non-polyadenylated mRNAs. This method generates a uniform 3' terminus by ligation of a 5'-phosphorylated oligonucleotide to the 3' end of the transcript that is recognized by a complementary primer during RT-PCR. This analysis showed that CIV virion proteins are encoded by genes in all three predetermined temporal classes: 23 immediate-early, 11 delayed-early and seven late virion gene transcripts were identified and assigned to ORFs. Early transcription of many virion protein genes supports the notion that virion proteins may also play essential roles in the initial stages of infection. In addition, some of the early gene products present in the virion may reflect the intracellular path that the virus follows during infection.


Assuntos
Iridovirus/genética , Animais , Replicação do DNA/genética , Invertebrados , Iridovirus/fisiologia , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , Transcrição Gênica , Proteínas Virais/genética , Vírion/genética
10.
J Gen Virol ; 94(Pt 1): 193-208, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052395

RESUMO

The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus-host interactions.


Assuntos
Vírus de DNA/genética , Vírus de DNA/metabolismo , Hipertrofia/virologia , Morfogênese/genética , Glândulas Salivares/virologia , Moscas Tsé-Tsé/virologia , Proteínas do Envelope Viral/metabolismo , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Hipertrofia/patologia , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Proteoma/genética , Proteoma/metabolismo , Glândulas Salivares/patologia , Proteínas do Envelope Viral/genética , Vírion/genética , Vírion/metabolismo
11.
Int J Syst Evol Microbiol ; 63(Pt 2): 511-515, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22523163

RESUMO

A Gram-positive-staining, rod-shaped, facultatively oligotrophic bacterial strain, designated MB18(T), was isolated from a water sample collected from the River Mahananda at Siliguri (26° 44' 23.20' N, 88° 25' 22.89' E), West-Bengal, India. On the basis of 16S rRNA gene sequence similarity, the closest relative of this strain was Brevibacterium epidermidis NCDO 2286(T) (96 % similarity). The DNA G+C content of strain MB18(T) was 64.6 mol%. Chemotaxonomic data [MK-8(H(2)) as the major menaquinone, galactose as the sole cell-wall sugar, meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, phosphatidylglycerol and diphosphatidylglycerol as constituents of the polar lipids, anteiso-C(15 : 0), anteiso-C(17 : 0) and iso-C(15 : 0) as the major fatty acids] supported the affiliation of strain MB18(T) to the genus Brevibacterium. The results of DNA G+C content, 16S rRNA gene sequence analysis and biochemical and physiological analyses allowed genotypic and phenotypic differentiation of strain MB18(T) from its nearest neighbour B. epidermidis. The isolate therefore represents a novel species, for which the name Brevibacterium siliguriense sp. nov. is proposed; the type strain is MB18(T) ( = DSM 23676(T) = LMG 25772(T)).


Assuntos
Brevibacterium/classificação , Filogenia , Rios/microbiologia , Diamino Aminoácidos/análise , Técnicas de Tipagem Bacteriana , Composição de Bases , Brevibacterium/genética , Brevibacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Índia , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
12.
Front Nutr ; 10: 964337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305089

RESUMO

Introduction: Hepatic lipid accumulation and mitochondrial dysfunction are hallmarks of metabolic associated fatty liver disease (MAFLD), yet molecular parameters underlying MAFLD progression are not well understood. Differential methylation within the mitochondrial DNA (mtDNA) has been suggested to be associated with dysfunctional mitochondria, also during progression to Metabolic Steatohepatitis (MeSH). This study further investigates whether mtDNA methylation is associated with hepatic lipid accumulation and MAFLD. Methods: HepG2 cells were constructed to stably express mitochondria-targeted viral and prokaryotic cytosine DNA methyltransferases (mtM.CviPI or mtM.SssI for GpC or CpG methylation, respectively). A catalytically inactive variant (mtM.CviPI-Mut) was constructed as a control. Mouse and human patients' samples were also investigated. mtDNA methylation was assessed by pyro- or nanopore sequencing. Results and discussion: Differentially induced mtDNA hypermethylation impaired mitochondrial gene expression and metabolic activity in HepG2-mtM.CviPI and HepG2-mtM.SssI cells and was associated with increased lipid accumulation, when compared to the controls. To test whether lipid accumulation causes mtDNA methylation, HepG2 cells were subjected to 1 or 2 weeks of fatty acid treatment, but no clear differences in mtDNA methylation were detected. In contrast, hepatic Nd6 mitochondrial gene body cytosine methylation and Nd6 gene expression were increased in mice fed a high-fat high cholesterol diet (HFC for 6 or 20 weeks), when compared to controls, while mtDNA content was unchanged. For patients with simple steatosis, a higher ND6 methylation was confirmed using Methylation Specific PCR, but no additional distinctive cytosines could be identified using pyrosequencing. This study warrants further investigation into a role for mtDNA methylation in promoting mitochondrial dysfunction and impaired lipid metabolism in MAFLD.

13.
Sci Rep ; 13(1): 14808, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684270

RESUMO

Malaria prevalence has become medically important and a socioeconomic impediment for the endemic regions, including Purulia, West Bengal. Geo-environmental variables, humidity, altitude, and land use patterns are responsible for malaria. For surveillance of the endemic nature of Purulia's blocks, statistical and spatiotemporal factors analysis have been done here. Also, a novel approach for the Pf malaria treatment using methanolic leaf extract of Morus alba S1 has significantly reduced the parasite load. The EC50 value (1.852) of the methanolic extract of M. alba S1 with P. falciparum 3D7 strain is close to the EC50 value (0.998) of the standard drug chloroquine with the same chloroquine-sensitive strain. Further studies with an in-silico model have shown successful interaction between DHFR and the phytochemicals. Both 1-octadecyne and oxirane interacted favourably, which was depicted through GC-MS analysis. The predicted binary logistic regression model will help the policy makers for epidemiological surveillance in malaria-prone areas worldwide when substantial climate variables create a circumstance favourable for malaria. From the in vitro and in silico studies, it can be concluded that the methanolic extract of M. alba S1 leaves were proven to have promising antiplasmodial activity. Thus, there is a scope for policy-driven approach for discovering and developing these lead compounds and undermining the rising resistance to the frontline anti-malarial drugs in the world.


Assuntos
Malária Falciparum , Malária , Morus , Malária/tratamento farmacológico , Cloroquina , Metanol , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
14.
Microbiol Resour Announc ; 11(6): e0008122, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35616409

RESUMO

Enterobacter sp. strain ASE was isolated from the gut of an infected domestic silkworm (Bombyx mori L.; Lepidoptera: Bombycidae). The whole-genome sequence (WGS) of the multidrug-resistant strain Enterobacter sp. ASE, which may contribute to our understanding of the strain's antibiotic resistance mechanism and virulence properties.

15.
Sci Rep ; 12(1): 630, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022476

RESUMO

Purulia is a malaria-prone district in West Bengal, India, with approximately half of the blocks defined as malaria endemic. We analyzed the malaria case in each block of the Purulia district from January 1, 2016, to December 31, 2020. As per the API, 20 blocks of Purulia were assigned to four different categories (0-3) and mapped using ArcGIS software. An exponential decay model was fitted to forecast the trend of malaria cases for each block of Purulia (2021-2025). There was a sharp decrease in total malaria cases and API from 2016 to 2020 due to the mass distribution of LLINs. The majority of cases (72.63%) were found in ≥ 15-year age group. Males were more prone to malaria (60.09%). Malaria was highly prevalent among Scheduled Tribes (48.44%). Six blocks were reported in Category 3 (high risk) and none in Category 0 (no risk) in 2016, while no blocks were determined to be in Category 3, and three blocks were in Category 0 in 2020. The exponential decay model prediction is oriented towards gaining malaria-free status in thirteen blocks of Purulia by 2025. This study will incite the government to uphold and strengthen the current efforts to meet the malaria elimination goals.


Assuntos
Malária
16.
J Gen Virol ; 91(Pt 12): 3065-74, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20719992

RESUMO

Many species of tsetse flies (Diptera: Glossinidae) can be infected by a virus that causes salivary gland hypertrophy (SGH). The genomes of viruses isolated from Glossina pallidipes (GpSGHV) and Musca domestica (MdSGHV) have recently been sequenced. Tsetse flies with SGH have reduced fecundity and fertility which cause a serious problem for mass rearing in the frame of sterile insect technique (SIT) programmes to control and eradicate tsetse populations in the wild. A potential intervention strategy to mitigate viral infections in fly colonies is neutralizing of the GpSGHV infection with specific antibodies against virion proteins. Two major GpSGHV virion proteins of about 130 and 50 kDa, respectively, were identified by Western analysis using a polyclonal rabbit antibody raised against whole GpSHGV virions. The proteome of GpSGHV, containing the antigens responsible for the immune-response, was investigated by liquid chromatography tandem mass spectrometry and 61 virion proteins were identified by comparison with the genome sequence. Specific antibodies were produced in rabbits against seven candidate proteins, including the ORF10/C-terminal fragment, ORF47 and ORF96 as well as proteins involved in peroral infectivity PIF-1 (ORF102), PIF-2 (ORF53), PIF-3 (ORF76) and P74 (ORF1). Antiserum against ORF10 specifically reacted to the 130 kDa protein in a Western blot analysis and to the envelope protein of GpSGHV, detected by using immunogold-electron microscopy. This result suggests that immune intervention of viral infections in colonies of G. pallidipes is a realistic option.


Assuntos
Anticorpos Antivirais/imunologia , Vírus de DNA/química , Proteoma/análise , Glândulas Salivares/virologia , Moscas Tsé-Tsé/virologia , Proteínas Virais/imunologia , Vírion/química , Animais , Antígenos Virais/análise , Antígenos Virais/química , Antígenos Virais/imunologia , Western Blotting , Vírus de DNA/isolamento & purificação , Ordem dos Genes , Genes Virais , Espectrometria de Massas , Peso Molecular , Coelhos , Proteínas Virais/análise , Proteínas Virais/química , Vírion/isolamento & purificação
17.
RSC Adv ; 10(38): 22742-22757, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35514551

RESUMO

The present study aimed to synthesise bio-molecule functionalized silver nanoparticles (AgNPs) using leaf extract from mulberry variety S-1635 (Morus alba L.) and to explore its antibacterial efficacy against multidrug resistant (MDR) gut bacteria isolated from natural infection observed from silkworm larvae in rearing conditions. AgNPs formation was established by surface plasmon resonance at 480 nm. The crystallinity of the synthesised AgNPs was checked by HR-TEM and XRD analysis. SEM and TEM characterisation further exhibited the spherical, monodispersed, well scattered nature of the AgNPs with an average particle size of 11.8 nm ± 2.8. The presence of (111), (200), (220) and (311) planes in Bragg's reflections confirmed the face-cantered-cubic crystalline silver. EDX analysis confirmed the presence of elemental silver. FT-IR spectra revealed functional groups were responsible for the reduction of silver ions. The zeta potential value of -17.3 mV and -25.6 mV was recorded in MH and DMEM/F-12 media, respectively. The LC-QTOF/MS and HRMS spectra disclosed the presence of bioactive compounds like flavonoid, gallic acid, and stigmasterol, which are probably involved in the reduction and functionalization of AgNPs. The antibacterial efficacy of bio-molecule functionalized AgNPs and the naked AgNPs was tested on Gram-positive and Gram-negative bacteria isolated from silkworms and characterized by using 16S rDNA and gyrB genes. The cytotoxicity of AgNPs was tested on WRL-68, HEK-293, ACHN, and HUH-7 cell lines using MTT assay. This study provides an insight into the application of bio-molecule functionalized AgNPs for combating various silkworm pathogens which severely affect the agro-rural economy of developing countries.

18.
Sci Rep ; 9(1): 14839, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619703

RESUMO

Herein, we report the synthesis of silver nanoparticles (AgNPs) by a green route using the aqueous leaf extract of Morus indica L. V1. The synthesized AgNPs exhibited maximum UV-Vis absorbance at 460 nm due to surface plasmon resonance. The average diameter (~54 nm) of AgNPs was measured from HR-TEM analysis. EDX spectra also supported the formation of AgNPs, and negative zeta potential value (-14 mV) suggested its stability. Moreover, a shift in the carbonyl stretching (from 1639 cm-1 to 1630 cm-1) was noted in the FT-IR spectra of leaf extract after AgNPs synthesis which confirm the role of natural products present in leaves for the conversion of silver ions to AgNPs. The four bright circular rings (111), (200), (220) and (311) observed in the selected area electron diffraction pattern are the characteristic reflections of face centered cubic crystalline silver. LC-MS/MS study revealed the presence of phytochemicals in the leaf extract which is responsible for the reduction of silver ions. MTT assay was performed to investigate the cytotoxicity of AgNPs against two human cell lines, namely HepG2 and WRL-68. The antibacterial study revealed that MIC value of the synthesized AgNPs was 80 µg/ml against Escherichia coli K12 and Staphylococcus aureus (MTCC 96). Finally, the synthesized AgNPs at 10 µg/ml dosages showed beneficial effects on the survivability, body weights of the Bombyx mori L. larvae, pupae, cocoons and shells weights via enhancing the feed efficacy.


Assuntos
Antibacterianos/farmacologia , Bombyx/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Morus/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Bombyx/crescimento & desenvolvimento , Química Verde , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Folhas de Planta/química , Prata/química
19.
Viruses ; 10(4)2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601483

RESUMO

Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions.


Assuntos
Genômica , Invertebrados/virologia , Iridovirus/classificação , Filogenia , Animais , Regulação Viral da Expressão Gênica , Genes Virais/genética , Especificidade de Hospedeiro , Iridovirus/genética , Iridovirus/fisiologia , Iridovirus/ultraestrutura , Proteínas Virais , Vírion
20.
J Microbiol Biotechnol ; 17(4): 632-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18051275

RESUMO

A cytoplasmic polyhedrosis virus (CPV) was isolated from the larvae of Thaumetopoea pityocampa and shown to cause an infection of midgut cells. This viral infection revealed several important diagnostic symptoms, including discoloration of the posterior midgut, reduced feeding, and extended development time of the larvae. The virus infection is lethal to Thaumetopoea pityocampa, and with the increasing doses kills the larvae within 4-5 days post infection. Electron microscopy studies showed typical cytoplasmic polyhedral inclusion bodies that are icosahedral, and ranged from 2.4 to 5.3 microm in diameter. Electrophoretic analysis of the RNA genome showed that the virus has a genome composed of 10 equimolar RNA segments with the sizes of 3,907, 3,716, 3,628, 3,249, 2,726, 1,914, 1,815, 1,256, 1,058, and 899 bp, respectively. Based on morphology and nucleic acid analysis, this virus was named Thaumetopoea pityocampa cytoplasmic polyhedrosis virus (TpCPV), and belongs to the genus Cypovirus, family Reoviridae.


Assuntos
Mariposas/virologia , Reoviridae/isolamento & purificação , Animais , Pinus , RNA Viral/análise , Reoviridae/genética , Reoviridae/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa