Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 177(1): 311-24, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20522652

RESUMO

Progranulin (PGRN) is involved in wound repair, inflammation, and tumor formation, but its function in the central nervous system is unknown. Roles in development, sexual differentiation, and long-term neuronal survival have been suggested. Mutations in the GRN gene resulting in partial loss of the encoded PGRN protein cause frontotemporal lobar degeneration with ubiquitin immunoreactive inclusions. We sought to understand the neuropathological consequences of loss of PGRN function throughout the lifespan of GRN-deficient ((-/+) and (-/-)) mice. An aged series of GRN-deficient and wild-type mice were compared by histology, immunohistochemistry, and electron microscopy. Although GRN-deficient mice were viable, GRN(-/-) mice were produced at lower than predicted frequency. Neuropathologically, GRN(-/+) were indistinguishable from controls; however, GRN(-/-) mice developed age-associated, abnormal intraneuronal ubiquitin-positive autofluorescent lipofuscin. Lipofuscin was noted in aged GRN(+/+) mice at levels comparable with those of young GRN(-/-) mice. GRN(-/-) mice developed microgliosis, astrogliosis, and tissue vacuolation, with focal neuronal loss and severe gliosis apparent in the oldest GRN(-/-) mice. Although no overt frontotemporal lobar degeneration with ubiquitin immunoreactive inclusions type- or TAR DNA binding protein-43-positive lesions were observed, robust lipofuscinosis and ubiquitination in GRN(-/-) mice is strikingly similar to changes associated with aging and cellular decline in humans and animal models. Our data suggests that PGRN plays a key role in maintaining neuronal function during aging and supports the notion that PGRN is a trophic factor essential for long-term neuronal survival.


Assuntos
Envelhecimento/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/citologia , Neurônios/metabolismo , Progranulinas , Ubiquitina/metabolismo , Ubiquitinação
2.
Am J Pathol ; 175(4): 1598-609, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19717642

RESUMO

Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer's disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies.


Assuntos
Degeneração Neural/complicações , Degeneração Neural/patologia , Tauopatias/complicações , Tauopatias/patologia , Proteínas tau/metabolismo , Envelhecimento/patologia , Animais , Axônios/patologia , Axônios/ultraestrutura , Cruzamento , Cromossomos Artificiais Bacterianos/genética , Regulação da Expressão Gênica , Vetores Genéticos/genética , Genoma/genética , Camundongos , Camundongos Transgênicos , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Fosforilação , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa