Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Bioorg Med Chem Lett ; 80: 129109, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549395

RESUMO

Glutathione S-transferases (GSTs) are a superfamily of multifunctional enzymes comprising multiple classes and subtypes. This paper describes the synthesis and characterization of TPPBN-1, a naphthalimide derivative conjugated with a triphenylphosphonium (TPP) cation. When 4-bromonaphthalimide (BrNaph), a previously characterized GST substrate, was conjugated to a TPP cation, the conjugate showed increased reactivity towards most alpha- and mu-class GSTs, particularly the GSTA2 subtype, compared to the parent compound, but hardly towards Pi-class GSTs. Using this probe with enhanced reactivity, the enzymatic activity of endogenous GSTA1/2 in HepG2 cells was visualized by confocal fluorescence microscopy. The results demonstrated that modification with TPP cations, which are often used as tags for targeting mitochondria, can be used to enhance the reactivity of probes for specific GST subtypes.


Assuntos
Glutationa Transferase , Naftalimidas , Naftalimidas/farmacologia , Glutationa Transferase/química , Mitocôndrias , Cátions
2.
Biosci Biotechnol Biochem ; 87(9): 946-953, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37280167

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leukosis, a fatal cattle disease that leads to significant economic losses in the livestock industry. Currently, no effective BLV countermeasures exist, except testing and culling. In this study, we developed a high-throughput fluorogenic assay to evaluate the inhibitory activity of various compounds on BLV protease, an essential enzyme for viral replication. The developed assay method was used to screen a chemical library, and mitorubrinic acid was identified as a BLV protease inhibitor that exhibited stronger inhibitory activity than amprenavir. Additionally, the anti-BLV activity of both compounds was evaluated using a cell-based assay, and mitorubrinic acid was found to exhibit inhibitory activity without cytotoxicity. This study presents the first report of a natural inhibitor of BLV protease-mitorubrinic acid-a potential candidate for the development of anti-BLV drugs. The developed method can be used for high-throughput screening of large-scale chemical libraries.


Assuntos
Vírus da Leucemia Bovina , Peptídeo Hidrolases , Animais , Bovinos , Vírus da Leucemia Bovina/química , Replicação Viral
3.
BMC Biol ; 20(1): 43, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35172816

RESUMO

BACKGROUND: Mosquito control is a crucial global issue for protecting the human community from mosquito-borne diseases. There is an urgent need for the development of selective and safe reagents for mosquito control. Flavonoids, a group of chemical substances with variable phenolic structures, such as daidzein, have been suggested as potential mosquito larvicides with less risk to the environment. However, the mode of mosquito larvicidal action of flavonoids has not been elucidated. RESULTS: Here, we report that several flavonoids, including daidzein, inhibit the activity of glutathione S-transferase Noppera-bo (Nobo), an enzyme used for the biosynthesis of the insect steroid hormone ecdysone, in the yellow fever mosquito Aedes aegypti. The crystal structure of the Nobo protein of Ae. aegypti (AeNobo) complexed with the flavonoids and its molecular dynamics simulation revealed that Glu113 forms a hydrogen bond with the flavonoid inhibitors. Consistent with this observation, substitution of Glu113 with Ala drastically reduced the inhibitory activity of the flavonoids against AeNobo. Among the identified flavonoid-type inhibitors, desmethylglycitein (4',6,7-trihydroxyisoflavone) exhibited the highest inhibitory activity in vitro. Moreover, the inhibitory activities of the flavonoids correlated with the larvicidal activity, as desmethylglycitein suppressed Ae. aegypti larval development more efficiently than daidzein. CONCLUSION: Our study demonstrates the mode of action of flavonoids on the Ae. aegypti Nobo protein at the atomic, enzymatic, and organismal levels.


Assuntos
Aedes , Animais , Flavonoides , Glutationa Transferase/metabolismo , Humanos , Larva , Controle de Mosquitos
4.
Chembiochem ; 23(21): e202200443, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36062403

RESUMO

Pi-class glutathione S-transferase (GSTP1) is highly expressed in a wide variety of human cancer tissues compared to the corresponding normal counterpart. Therefore, GSTP1 is a potential target enzyme for overcoming resistance to chemotherapeutic agents or visualizing specific lesions such as cancer. Here, we present orange and red fluorescence-emitting probes selective for GSTP1. Carbofluorescein and TokyoMagenta fluorophores were modified with a previously described GSTP1-selective chromogenic compound to generate orange and red fluorescence probes, respectively. Of these probes, Ps-CF, the orange fluorescence-emitting probe, was confirmed to be highly specific for detecting GSTP1 exogenously or endogenously expressed in various cancer cells. Additionally, it was demonstrated that Ps-CF is applicable for the simultaneous detection of GSTP1 and another cancer-associated enzyme by using a green fluorescence emitting γ-glutamyl transpeptidase (GGT) probe. In conclusion, the fluorescent probes developed in this study enable the simultaneous detection of multiple tumour markers such as GSTP1 with other cancer-associated enzymes by concurrently using spectrally distinguished fluorescent probes, potentially broadening the scope of cancer detection.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Glutationa S-Transferase pi , Glutationa Transferase , Neoplasias/diagnóstico por imagem , Biomarcadores Tumorais
5.
Molecules ; 27(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35566260

RESUMO

Retusone A (1), a new sesquiterpene dimer consisting of two guaiane-type sesquiterpenoids, and oleodaphnal (2) were isolated from heartwood of Wikstroemia retusa (Thymelaeaceae). The planar structure of 1 was elucidated on the basis of HRESIMS and NMR spectroscopic data, and the relative stereochemistry was established by X-ray diffraction analysis. The absolute configuration of 1 was determined by electronic circular dichroism. Compound 1 suppressed luciferase reporter gene expression driven by the HBO1 (histone acetyltransferase binding to ORC1) gene promoter in human breast cancer MCF7 cells. Compound 1 also decreased the expression of endogenous HBO1 mRNA and protein, and inhibited proliferation of the cells. These results suggest that retusone A (1), which has a unique dimeric sesquiterpenoid structure with inhibitory activity against HBO1 expression, may contribute to the development of a novel therapeutic candidate for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Sesquiterpenos , Wikstroemia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Histona Acetiltransferases/genética , Humanos , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos de Guaiano , Wikstroemia/química
6.
J Biol Chem ; 295(27): 9105-9120, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32371398

RESUMO

Modification of the transforming growth factor ß (TGF-ß) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-ß signaling, suggesting that this mode of regulation of TGF-ß signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-ß signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-ßRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-ß signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-ß signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-ß/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-ß/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-ß/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-ß signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Carcinogênese/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Caenorhabditis elegans , Transformação Celular Neoplásica , Enzimas Desubiquitinantes , Larva/metabolismo , Pulmão/metabolismo , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Ubiquitina Tiolesterase/fisiologia , Ubiquitinação
7.
J Biol Chem ; 295(20): 7154-7167, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32241910

RESUMO

Ecdysteroids are the principal steroid hormones essential for insect development and physiology. In the last 18 years, several enzymes responsible for ecdysteroid biosynthesis encoded by Halloween genes were identified and genetically and biochemically characterized. However, the tertiary structures of these proteins have not yet been characterized. Here, we report the results of an integrated series of in silico, in vitro, and in vivo analyses of the Halloween GST protein Noppera-bo (Nobo). We determined crystal structures of Drosophila melanogaster Nobo (DmNobo) complexed with GSH and 17ß-estradiol, a DmNobo inhibitor. 17ß-Estradiol almost fully occupied the putative ligand-binding pocket and a prominent hydrogen bond formed between 17ß-estradiol and Asp-113 of DmNobo. We found that Asp-113 is essential for 17ß-estradiol-mediated inhibition of DmNobo enzymatic activity, as 17ß-estradiol did not inhibit and physically interacted less with the D113A DmNobo variant. Asp-113 is highly conserved among Nobo proteins, but not among other GSTs, implying that this residue is important for endogenous Nobo function. Indeed, a homozygous nobo allele with the D113A substitution exhibited embryonic lethality and an undifferentiated cuticle structure, a phenocopy of complete loss-of-function nobo homozygotes. These results suggest that the nobo family of GST proteins has acquired a unique amino acid residue that appears to be essential for binding an endogenous sterol substrate to regulate ecdysteroid biosynthesis. To the best of our knowledge, ours is the first study describing the structural characteristics of insect steroidogenic Halloween proteins. Our findings provide insights relevant for applied entomology to develop insecticides that specifically inhibit ecdysteroid biosynthesis.


Assuntos
Proteínas de Drosophila/química , Estradiol/química , Glutationa Transferase/química , Aedes , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ecdisteroides/biossíntese , Ecdisteroides/química , Ecdisteroides/genética , Estradiol/genética , Estradiol/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Mutação com Perda de Função , Mutação de Sentido Incorreto , Relação Estrutura-Atividade
8.
Molecules ; 26(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919344

RESUMO

Cytotoxicity and apoptosis-inducing properties of compounds isolated from Garcinia subelliptica leaves were investigated. The hexane-soluble portion of MeOH extracts of G. subelliptica leaves that showed cytotoxic activity was separated to yield seven compounds 1-7. Chemical structure analysis using NMR spectroscopy and mass spectrometry confirmed that compound 1 was canophyllol, and compounds 2-7 were garcinielliptones N, O, J, G, F, and garcinielliptin oxide, respectively. Among them, garcinielliptone G (5) showed growth inhibition by causing apoptosis in THP-1 and Jurkat cells derived from human acute monocytic leukemia and T lymphocyte cells, respectively. Apoptosis induced by garcinielliptone G (5) was demonstrated by the detection of early apoptotic cells with fluorescein-labeled Annexin V and increases in cleaved caspase-3 and cleaved PARP protein levels. However, the addition of caspase inhibitor Z-VAD-FMK did not affect growth arrest or apoptosis induction. These results suggest that garcinielliptone G (5) can induce both caspase-3 activation and caspase-independent apoptosis. Therefore, garcinielliptone G (5) may be a potential candidate for acute leukemia treatment.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Garcinia/química , Triterpenos/química , Triterpenos/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Células Jurkat , Leucemia , Células THP-1
9.
Bioorg Med Chem ; 26(20): 5494-5498, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30293794

RESUMO

Fluorescence labeling of the target molecules using a small molecule-based probe is superior than a method using genetically expressed green fluorescence protein (GFP) in terms of convenience in its preparation and functionalization. Fluorophore-nitrilotriacetic acid (NTA) conjugates with several ester protecting groups were synthesized and evaluated for their cell membrane permeability by fluorescence microscopy analysis. One of the derivatives, acetoxymethyl (AM)-protected NTA conjugate is hydrolyzed, resulting in intracellular accumulation, thus providing localized fluorescence intensity in cells. This modification is expected as an effective method for converting a non-cell membrane permeable NTA-BODIPY conjugates to a cell membrane permeable derivatives.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Ácido Nitrilotriacético/análogos & derivados , Ácido Nitrilotriacético/metabolismo , Compostos de Boro/síntese química , Compostos de Boro/química , Compostos de Boro/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Fluorescência , Corantes Fluorescentes/síntese química , Humanos , Hidrólise , Microscopia de Fluorescência , Ácido Nitrilotriacético/síntese química
10.
Bioorg Med Chem ; 24(13): 2914-2919, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185013

RESUMO

Estrogen receptors (ERs) play a major role in the growth of human breast cancer cells. A selective estrogen receptor down-regulator (SERD) that acts as not only an inhibitor of ligand binding, but also induces the down-regulation of ER, would be useful for the treatment for ER-positive breast cancer. We previously reported that tamoxifen derivatives, which have a long alkyl chain, had the ability to down-regulate ERα. With the aim of expanding range of the currently available SERDs, we designed and synthesized raloxifene derivatives, which had various lengths of the long alkyl chains, and evaluated their SERD activities. All compounds were able to bind ERα, and RC10, which has a decyl group on the amine moiety of raloxifene, was shown to be the most potent compound. Our findings suggest that the ligand core was replaceable, and that the alkyl length was important for controlling SERD activity. Moreover, RC10 showed antagonistic activity and its potency was superior to that of 4,4'-(heptane-4,4-diyl)bis(2-methylphenol) (18), a competitive antagonist of ER without SERD activity. These results provide information that will be useful for the development of promising SERDs candidates.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Cloridrato de Raloxifeno/síntese química , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Concentração Inibidora 50 , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , Cloridrato de Raloxifeno/química
11.
Phytother Res ; 30(10): 1689-1695, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388056

RESUMO

In the fasting state, gluconeogenesis is upregulated by glucagon. Glucagon stimulates cyclic adenosine monophosphate production, which induces the expression of key enzymes for gluconeogenesis, such as cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), which are involved in gluconeogenesis through the protein kinase A/cAMP response element-binding protein (CREB) pathway. Using a luciferase reporter gene assay, a methanol extract of the bulbs of Lycoris sanguinea MAXIM. var. kiushiana Makino was found to suppress cAMP-enhanced PEPCK-C promoter activity. In addition, two alkaloids, lycoricidine and lycoricidinol, in the extract were identified as active constituents. In forskolin-stimulated human hepatoma cells, these alkaloids suppressed the expression of a reporter gene under the control of cAMP response element and also prevented increases in the endogenous levels of phosphorylated CREB and PEPCK mRNA expression. These results suggest that lycoricidine and lycoricidinol suppress PEPCK-C expression by inhibiting the phosphorylation of CREB and may thus have the potential to prevent excessive gluconeogenesis in type 2 diabetes. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Lycoris/química , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Alcaloides , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gluconeogênese , Humanos , Fosforilação , Transfecção
12.
Bioorg Med Chem ; 23(13): 3091-6, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26003343

RESUMO

Estrogen receptors (ERs) play a major role in the growth of human breast cancer cells. An antagonist that acts as not only an inhibitor of ligand binding but also an inducer of the down-regulation of ER would be useful for the treatment for ER-positive breast cancer. We previously reported the design and synthesis of a selective estrogen receptor down-regulator (SERD), (E/Z)-4-(1-{4-[2-(dodecylamino)ethoxy]phenyl}-2-phenylbut-1-en-1-yl)phenol (C12), which is a tamoxifen derivative having a long alkyl chain on the amine moiety. This compound induced degradation of ERα via a proteasome-dependent pathway and showed an antagonistic effect in MCF-7 cells. With the aim of increasing the potency of SERDs, we designed and synthesized various tamoxifen derivatives that have various lengths and terminal groups of the long alkyl side chain. During the course of our investigation, C10F having a 10-fluorodecyl group on the amine moiety of 4-OHT was shown to be the most potent compound among the tamoxifen derivatives. Moreover, computational docking analysis suggested that the long alkyl chain interacted with the hydrophobic region on the surface of the ER, which is a binding site of helix 12 and coactivator. These results provide useful information to develop promising candidates as SERDs.


Assuntos
Antagonistas de Estrogênios/síntese química , Receptor alfa de Estrogênio/antagonistas & inibidores , Tamoxifeno/síntese química , Sítios de Ligação , Western Blotting , Regulação para Baixo , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
13.
Bioorg Med Chem Lett ; 24(1): 87-9, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332630

RESUMO

We designed and synthesized an estrogen receptor (ER) down-regulator (5), which is a derivative of tamoxifen with a long alkyl side chain. Compound 5 effectively reduced ER protein levels in MCF-7 cells and had an antagonistic effect.


Assuntos
Desenho de Fármacos , Receptores de Estrogênio/antagonistas & inibidores , Tamoxifeno/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Tamoxifeno/síntese química , Tamoxifeno/química
14.
Artigo em Inglês | MEDLINE | ID: mdl-38366688

RESUMO

Procyanidins are gaining attention due to their potential health benefits. We found that cacao liquor procyanidin (CLPr) from Theobroma cacao seeds increased the lifespan of Caenorhabditis elegans, a representative model organism for aging studies. The genetic dependence of the lifespan-extending effect of CLPr was consistent with that of blueberry procyanidin, which is dependent on unc-43, osr-1, sek-1, and mev-1, but not on daf-16, sir-2.1, or skn-1. The lifespan-extending effect of CLPr was inhibited by neuron-specific RNA interference (RNAi) targeting unc-43 and pmk-1, and in worms with loss-of-function mutations in the odr-3, odr-1, or tax-4 genes, which are essential in sensory neurons, including AWC neurons. It was also inhibited in worms in which AWC neurons or AIB interneurons had been eliminated, and in worms with loss-of-function mutations in eat-4 or glr-1, which are responsible for glutamatergic synaptic transmission. These results suggest that the lifespan-extending effect of CLPr is dependent on the nervous system. In addition, it also requires unc-43 and pmk-1 expression in nonneuronal cells, as demonstrated by the experiments with RNAi in wild-type worms, the neuronal cells of which are not affected by systemic RNAi. The osr-1 gene is expressed in hypodermal and intestinal cells and regulates the response to osmotic stress along with unc-43/calcium/calmodulin-dependent protein kinase II and the p38 mitogen-activated protein kinase pathway. Consistent with this, CLPr improved osmotic stress tolerance in an unc-43- and pmk-1-dependent manner, and it was also dependent on AWC neurons. The lifespan-extending and osmotic-tolerance-improving activities were attributed to procyanidins with a tetrameric or higher-order oligomeric structure.


Assuntos
Biflavonoides , Cacau , Proteínas de Caenorhabditis elegans , Catequina , Proantocianidinas , Animais , Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Proantocianidinas/farmacologia , Proantocianidinas/metabolismo , Cacau/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo
15.
Phytother Res ; 27(6): 906-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22927089

RESUMO

The cAMP/protein kinase A/cAMP response element (CRE)-binding protein pathway is important for various physiological aspects including regulation of gluconeogenic gene expression. Rosemary, a well-known herb, has been reported to decrease blood glucose levels. We found that methanol extracts of rosemary suppressed forskolin (FSK)-stimulated luciferase expression under the control of CRE, as well as the promoters for cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) and glucose-6-phosphatase (G6Pase) catalytic subunit genes in human hepatoma HepG2 cells. Three abietane-type diterpenes and two flavonoids were isolated from the rosemary extracts. Among these, 7-O-methylrosmanol (1) and royleanonic acid (3) effectively suppressed FSK-induced luciferase expression under the control of the CRE, PEPCK-C and G6Pase gene promoters. PEPCK-C and G6Pase, which play a key role in the homeostatic regulation of blood glucose levels, are important for managing type II diabetes mellitus. Therefore, the ability of rosemary and its components to suppress cAMP responsiveness of the PEPCK-C or G6Pase gene may contribute to its antihyperglycemic activity.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diterpenos/farmacologia , Gluconeogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Rosmarinus/química , Colforsina , Flavonoides/farmacologia , Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfatase/metabolismo , Células Hep G2 , Humanos , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo
16.
Talanta ; 251: 123796, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952503

RESUMO

Pi-class glutathione S-transferase (GSTP1) is a detoxification enzyme that is highly expressed in various types of cancer cells and is a promising target for cancer imaging and therapy. Ps-TAc, an acetylated derivative of the GSTP1-specific fluorogenic substrate Ps-TG, is attracting attention as an effective GSTP1 fluorescent probe, and has been successfully used to visualize intracellular GSTP1 activity. Ps-TAc is a prodrug type fluorescent probe in which the phenolic hydroxyl group of Ps-TG is acetylated and thus is susceptible to nonspecific hydrolysis, potentially compromising its ability to detect GSTP1 activity. Here, we describe the development of a highly selective fluorogenic GSTP1 substrate that is membrane permeable and does not involve esterification and show its application to live-cell imaging and FACS analysis. We designed and synthesized several compounds with benzylsulfone substituents instead of the mesyl group of Ps-TG and tested their fluorescence activation by GSTP1 catalysis in vitro and in cellulo. Of the test compounds, Ps-TG3 was the most suitable for the visualization of intracellular GSTP1 activity because the signal from living cells increased significantly when MK-571, an inhibitor of multidrug resistance proteins (MRPs), was simultaneously loaded. The results obtained by co-loading Ps-TG3 and MK571 into GSTP1-nonexpressing cells suggest that Ps-TG3 can be a substrate for MRPs. The usefulness of Ps-TG3 was demonstrated by fluorescence imaging of several cancer cell cultures and FACS analysis of lymphoma cells. The results presented here suggest that Ps-TG3, in combination with MK571, is useful for visualizing and detecting intracellular GSTP1 activity in cancer cells that highly express GSTP1.


Assuntos
Neoplasias , Pró-Fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Corantes Fluorescentes/química , Glutationa/química , Glutationa S-Transferase pi/química , Glutationa Transferase/química , Humanos , Pró-Fármacos/farmacologia
17.
J Nat Med ; 77(1): 180-187, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36266527

RESUMO

Homeobox A9 (HOXA9) is a transcription factor that is overexpressed in acute myeloid leukemia (AML). It is associated with the pathogenesis and progression of AML, and is a factor responsible for a poor prognosis. Therefore, the development of HOXA9-targeting molecules may contribute to not only better understanding of the mechanism of HOXA9 regulation, but also the development of therapeutic applications. We constructed a reporter assay system using the promoter region of the KBTBD10 gene, to which HOXA9 directly binds and regulates transcription, in the human acute monocytic leukemia cell line THP-1. Using this luciferase gene assay, we screened 1120 plant extracts and a methanol extract of the unripe fruits of Cerbera manghas was found to suppress the reporter gene expression mediated by the KBTBD10 promoter. From the extract, five steroid-type compounds were identified as the active constituents: 7α-neriifolin (1), 17ß-neriifolin (2), 17α-digitoxigenin ß-D-glucosyl-(1 → 4)-α-L-thevetoside (3), 17ß-digitoxigenin ß-D-glucosyl-(1 → 4)-α-L-thevetoside (4), and acetylthevetin B (5). Among the five compounds, 17ß-neriifolin most potently inhibited HOXA9-dependent gene expression without affecting the HOXA9 mRNA levels, and suppressed cell proliferation by inducing apoptosis. The findings on the structure-activity relationships of the compounds from C. manghas may contribute to the development of small molecule inhibitors of HOXA9.


Assuntos
Apocynaceae , Leucemia Mieloide Aguda , Humanos , Genes Homeobox , Frutas , Digitoxigenina/uso terapêutico , Linhagem Celular , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proliferação de Células , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
18.
PLoS One ; 18(8): e0290851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651399

RESUMO

Decalin-containing tetramic acid is a bioactive scaffold primarily produced by filamentous fungi. The structural diversity of this group of compounds is generated by characteristic enzymes of fungal biosynthetic pathways, including polyketide synthase/nonribosomal peptide synthetase hybrid enzymes and decalin synthase, which are responsible for the construction of a linear polyenoyl tetramic acid structure and stereoselective decalin formation via the intramolecular Diels-Alder reaction, respectively. Compounds that differed only in the decalin configuration were collected from genetically engineered mutants derived from decalin-containing tetramic acid-producing fungi and used for a structure-activity relationship study. Our evaluation of biological activities, such as cytotoxicity against several cancer cell lines and antibacterial, antifungal, antimalarial, and mitochondrial inhibitory activities, demonstrated that the activity for each assay varies depending on the decalin configurations. In addition to these known biological activities, we revealed that the compounds showed inhibitory activity against the insect steroidogenic glutathione S-transferase Noppera-bo. Engineering the decalin configurations would be useful not only to find derivatives with better biological activities but also to discover overlooked biological activities.


Assuntos
Antibacterianos , Glutationa Transferase , Animais , Glutationa Transferase/genética , Insetos
19.
J Insect Physiol ; 134: 104294, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389412

RESUMO

In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.


Assuntos
Drosophila melanogaster , Ecdisona , Triterpenos/farmacologia , Animais , Bombyx/efeitos dos fármacos , Bombyx/metabolismo , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Ecdisona/antagonistas & inibidores , Ecdisona/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Hormônios Juvenis/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Muda/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Extratos Vegetais/farmacologia , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Pupa/metabolismo
20.
J Pestic Sci ; 46(1): 75-87, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33746549

RESUMO

Insect growth regulators (IGRs) can be developed by elucidating the molecular mechanisms of insect-specific biological events. Because insect molting, and metamorphosis are controlled by ecdysteroids, their biosynthetic pathways can serve as targets for IGR development. The glutathione S-transferase Noppera-bo (Nobo), which is conserved in dipteran and lepidopteran species, plays an essential role in ecdysteroid biosynthesis. Our previous study using 17ß-estradiol as a molecular probe revealed that Asp113 of Drosophila melanogaster Nobo (DmNobo) is essential for its biological function. However, to develop IGRs with a greater Nobo inhibitory activity than 17ß-estradiol, further structural information is warranted. Here, we report five novel non-steroidal DmNobo inhibitors. Analysis of crystal structures of complexes revealed that DmNobo binds these inhibitors in an Asp113-independent manner. Among amino acid residues at the substrate-recognition site, conformation of conserved Phe39 was dynamically altered upon inhibitor binding. Therefore, these inhibitors can serve as seed compounds for IGR development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa