Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Angew Chem Int Ed Engl ; 62(1): e202214412, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36347766

RESUMO

Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.


Assuntos
Cisteína Endopeptidases , Proteínas , Proteínas/metabolismo , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Ligadura
2.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807211

RESUMO

Amyloid fibrils have been an important subject as they are involved in the development of many amyloidoses and neurodegenerative diseases. The formation of amyloid fibrils is typically initiated by nucleation, whereas its exact mechanisms are largely unknown. With this situation, we have previously identified prefibrillar aggregates in the formation of insulin B chain amyloid fibrils, which have provided an insight into the mechanisms of protein assembly involved in nucleation. Here, we have investigated the formation of insulin B chain amyloid fibrils under different pH conditions to better understand amyloid nucleation mediated by prefibrillar aggregates. The B chain showed strong propensity to form amyloid fibrils over a wide pH range, and prefibrillar aggregates were formed under all examined conditions. In particular, different structures of amyloid fibrils were found at pH 5.2 and pH 8.7, making it possible to compare different pathways. Detailed investigations at pH 5.2 in comparison with those at pH 8.7 have suggested that the evolution of protofibril-like aggregates is a common mechanism. In addition, different processes of evolution of the prefibrillar aggregates have also been identified, suggesting that the nucleation processes diversify depending on the polymorphism of amyloid fibrils.


Assuntos
Amiloide , Insulina , Amiloide/química , Proteínas Amiloidogênicas/metabolismo , Insulina/metabolismo , Ligação Proteica
3.
Biophys J ; 120(16): 3341-3354, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34242590

RESUMO

The flexible conformations of a multidomain protein are responsible for its biological functions. Although MurD, a 47-kDa protein that consists of three domains, sequentially changes its domain conformation from an open form to a closed form through a semiclosed form in its enzymatic reaction, the domain dynamics in each conformation remains unclear. In this study, we verify the conformational dynamics of MurD in the corresponding three states (apo and ATP- and inhibitor-bound states) with a combination of small-angle x-ray and neutron scattering (SAXS and SANS), dynamic light scattering (DLS), neutron backscattering (NBS), neutron spin echo (NSE) spectroscopy, and molecular dynamics (MD) simulations. Applying principal component analysis of the MD trajectories, twisting and open-closed domain modes are identified as the major collective coordinates. The deviations of the experimental SAXS profiles from the theoretical calculations based on the known crystal structures become smaller in the ATP-bound state than in the apo state, and a further decrease is evident upon inhibitor binding. These results suggest that domain motions of the protein are suppressed step by step of each ligand binding. The DLS and NBS data yield collective and self-translational diffusion constants, respectively, and we used them to extract collective domain motions in nanometer and nanosecond scales from the NSE data. In the apo state, MurD shows both twisting and open-closed domain modes, whereas an ATP binding suppresses twisting domain motions, and a further reduction of open-closed mode is seen in the inhibitor-binding state. These observations are consistent with the structure modifications measured by the small-angle scattering as well as the MD simulations. Such changes in the domain dynamics associated with the sequential enzymatic reactions should be related to the affinity and reaction efficiency with a ligand that binds specifically to each reaction state.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Nêutrons , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639138

RESUMO

HspB1 is a mammalian sHsp that is ubiquitously expressed in almost all tissues and involved in regulating many vital functions. Although the recent crystal structure of human HspB1 showed that 24 monomers form the oligomeric complex of human HspB1 in a spherical configuration, the molecular architecture of HspB1 is still controversial. In this study, we examined the oligomeric structural change of CgHspB1 by sedimentation velocity analytical ultracentrifugation. At the low temperature of 4 °C, CgHspB1 exists as an 18-mer, probably a trimeric complex of hexamers. It is relatively unstable and partially dissociates into small oligomers, hexamers, and dodecamers. At elevated temperatures, the 24-mer was more stable than the 18-mer. The 24-mer is also in dynamic equilibrium with the dissociated oligomers in the hexameric unit. The hexamer further dissociates to dimers. The disulfide bond between conserved cysteine residues seems to be partly responsible for the stabilization of hexamers. The N-terminal domain is involved in the assembly of dimers and the interaction between hexamers. It is plausible that CgHspB1 expresses a chaperone function in the 24-mer structure.


Assuntos
Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Conformação Proteica , Multimerização Proteica , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Domínios Proteicos
5.
Biophys J ; 118(9): 2209-2219, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31952809

RESUMO

An overlapping dinucleosome (OLDN) is a structure composed of one hexasome and one octasome and appears to be formed through nucleosome collision promoted by nucleosome remodeling factor(s). In this study, the solution structure of the OLDN was investigated through the integration of small-angle x-ray and neutron scattering (SAXS and SANS, respectively), computer modeling, and molecular dynamics simulations. Starting from the crystal structure, we generated a conformational ensemble based on normal mode analysis and searched for the conformations that reproduced the SAXS and SANS scattering curves well. We found that inclusion of histone tails, which are not observed in the crystal structure, greatly improved model quality. The obtained structural models suggest that OLDNs adopt a variety of conformations stabilized by histone tails situated at the interface between the hexasome and octasome, simultaneously binding to both the hexasomal and octasomal DNA. In addition, our models define a possible direction for the conformational changes or dynamics, which may provide important information that furthers our understanding of the role of chromatin dynamics in gene regulation.


Assuntos
Histonas , Nucleossomos , Cromatina , Histonas/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207549

RESUMO

Plasmodium falciparum parasitophorous vacuolar protein 1 (PfPV1), a protein unique to malaria parasites, is localized in the parasitophorous vacuolar (PV) and is essential for parasite growth. Previous studies suggested that PfPV1 cooperates with the Plasmodium translocon of exported proteins (PTEX) complex to export various proteins from the PV. However, the structure and function of PfPV1 have not been determined in detail. In this study, we undertook the expression, purification, and characterization of PfPV1. The tetramer appears to be the structural unit of PfPV1. The activity of PfPV1 appears to be similar to that of molecular chaperones, and it may interact with various proteins. PfPV1 could substitute CtHsp40 in the CtHsp104, CtHsp70, and CtHsp40 protein disaggregation systems. Based on these results, we propose a model in which PfPV1 captures various PV proteins and delivers them to PTEX through a specific interaction with HSP101.


Assuntos
Proteínas de Choque Térmico/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Humanos
7.
Biochemistry ; 58(24): 2769-2781, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31135143

RESUMO

Abnormal protein aggregation tends to result in the formation of ß-sheet rich amyloid fibrils, which are related to various kinds of amyloidoses and neurodegenerative diseases. The susceptibility to aggregation of protein molecules is dealt with by proteostasis in living systems, in which molecular chaperones play an important role. Recently, several secreted proteins have been examined as extracellular chaperones with a potency to suppress the formation of amyloid fibrils, although the whole picture that includes their inhibition mechanisms is not yet understood. In this study, we investigated the inhibitory effect of fibrinogen (Fg), one of the extracellular proteins identified as a potential member of the group of chaperones, on fibril formation. Insulin B chain was used as an amyloid formation model system because its prefibrillar intermediate species in the nucleation phase were well characterized. We revealed that Fg efficiently inhibited amyloid fibril formation via a direct interaction with the surface of the prefibrillar intermediates. Small-angle X-ray scattering experiments and a stoichiometry analysis suggested a structural model in which the surface of the rod-shaped prefibrillar intermediates is surrounded by Fg molecules. From such a specific manner of interactions, we propose that the role of Fg is to disturb fibril growth by confining the nuclei even when the nucleation occurs inside the prefibrillar intermediate. The structural property of the B-chain intermediates complexed with Fg would provide insights into the general principles of the functions of chaperones and other potential chaperone-like proteins involved in amyloid-related diseases.


Assuntos
Proteínas Amiloidogênicas/antagonistas & inibidores , Fibrinogênio/química , Insulina/química , Chaperonas Moleculares/química , Multimerização Proteica , Proteínas Amiloidogênicas/química , Animais , Bovinos , Humanos
8.
J Am Chem Soc ; 140(8): 2722-2726, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29444565

RESUMO

Small-angle neutron scattering (SANS) was used to examine dilute solutions of a poly(quinoxaline-2,3-diyl) (PQX) with (R)-2-octyloxymethyl side chains in deuterated THF or a mixture of deuterated 1,1,2-TCE and THF (8/2, v/v), in which the PQX adopts pure P- and M-helical structures. The structures of the PQX that were obtained based on the SANS experiments in combination with theoretical calculations suggest that in THF, the chiral side chains of the P-helical PQX are extended, whereas in the 1,1,2-TCE/THF mixture, the side chains of the M-helical PQX are folded. Consequently, P-helical structures should be preferred in good solvents such as THF, which solvate the extended side chains, whereas M-helical structures should be preferred in poor solvents such as 1,1,2-TCE, wherein the side chains adopt shrunken conformations with maximized van der Waals interactions between the side chains. This study thus reveals the first example for fully determined nuanced conformations of the side chains of synthetic polymers in solution based on SANS experiments and theoretical calculations.

9.
Soft Matter ; 13(43): 7862-7869, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29019368

RESUMO

We studied the dynamics of zinc diacrylate (ZDA) reinforced polybutadiene rubber (BR) (ZDA/BR) using the quasielastic neutron scattering technique to determine the effect of concentration of ZDA on polymer dynamics. First, we evaluated the temperature dependence of mean square displacements (〈u2〉) for ZDA/BR with different ZDA volume fractions. 〈u2〉 increased with temperature below 170 K, and we observed no significant ZDA volume fraction dependence. However, it increased more steeply above 170 K, and the value of 〈u2〉 was smaller for the samples with increasing ZDA fraction. To elucidate the origin of the decrease in 〈u2〉 with increasing ZDA content, dynamic scattering laws (S(Q,ω)) were analyzed. An increase in the elastic component, an increase in the mean relaxation time, and a broadening of distribution of relaxation time were observed with the increasing volume fraction of ZDA. In addition, the ZDA volume fraction dependence of the elastic component roughly corresponded to that of elastic modulus, indicating that the elastic component is related to its mechanical strength. Referring to the previously reported static structure of the present ZDA/BR system, a model for the heterogeneous BR dynamics was proposed. This model assumes the coexistence of immobile, mobile, and interfacial constrained mobile regions. It was found to be appropriate for the explanation of the observed dynamics. We proposed that a network-like structure of the BR having a high crosslinking density around ZDA aggregates is mainly responsible for the high elastic modulus of ZDA/BR.

10.
Soft Matter ; 11(27): 5563-70, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26073537

RESUMO

An optically active amphiphilic nitroxide radical compound [(S,S,R)-], which contains a paramagnetic (2S,5S)-2,5-dimethyl-2,5-diphenylpyrrolidine-N-oxyl radical group fixed in the inner position together with a hydrophobic long alkyl chain and a hydrophilic (R)-alanine residue in the opposite terminal positions, was found to serve as a low-molecular-weight gelator in H2O to give rise to a spin-labelled physical hydrogel. Characterization of the hydrogel was performed by microscopic (SEM, TEM and AFM) techniques, XRD and SAXS measurements, and IR, UV and CD spectroscopies. The gel-sol transition temperature was determined by EPR spectral line-width (ΔHpp) analysis. Measurement of the temperature dependence of relative paramagnetic susceptibility (χrel) for the hydrogel and sol phases was achieved by means of the double-integration of VT-EPR spectra.


Assuntos
Hidrogéis/síntese química , Óxidos de Nitrogênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Interações Hidrofóbicas e Hidrofílicas , Pirrolidinas/química , Marcadores de Spin , Estereoisomerismo , Temperatura de Transição
11.
Biophys J ; 106(10): 2206-13, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24853749

RESUMO

Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.


Assuntos
Histonas/química , Histonas/metabolismo , Nucleossomos/metabolismo , Humanos , Rotação
12.
J Chem Phys ; 140(14): 144906, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24735317

RESUMO

We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10(-9) to 10(-5) s) and a scattering vector Q range (9.6-40 nm(-1)), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow ß-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature T(c) in the mode coupling theory. The results suggest the important roles of hopping motions below T(c), which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

13.
Protein Sci ; 33(7): e5092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924206

RESUMO

Conserved tryptophan residues are critical for the structure and the stability of ß/γ-crystallin in the lenses of vertebrates. During aging, in which the lenses are continuously exposed to ultraviolet irradiation and other environmental stresses, oxidation of tryptophan residues in ß/γ-crystallin is triggered and impacts the lens proteins to varying degrees. Kynurenine derivatives, formed by oxidation of tryptophan, accumulate, resulting in destabilization and insolubilization of ß/γ-crystallin, which correlates with age-related cataract formation. To understand the contribution of tryptophan modification on the structure and stability of human ßB2-crystallin, five tryptophan residues were mutated to phenylalanine considering its similarity in structure and hydrophilicity to kynurenine. Among all mutants, W59F and W151F altered the stability and homo-oligomerization of ßB2-crystallin-W59F promoted tetramerization whereas W151F blocked oligomerization. Most W59F dimers transformed into tetramer in a month, and the separated dimer and tetramer of W59F demonstrated different structures and hydrophobicity, implying that the biochemical properties of ßB2-crystallin vary over time. By using SAXS, we found that the dimer of ßB2-crystallin in solution resembled the lattice ßB1-crystallin dimer (face-en-face), whereas the tetramer of ßB2-crystallin in solution resembled its lattice tetramer (domain-swapped). Our results suggest that homo-oligomerization of ßB2-crystallin includes potential inter-subunit reactions, such as dissociation, unfolding, and re-formation of the dimers into a tetramer in solution. The W>F mutants are useful in studying different folding states of ßB2-crystallin in lens.


Assuntos
Dobramento de Proteína , Triptofano , Cadeia B de beta-Cristalina , Humanos , Triptofano/química , Triptofano/genética , Cadeia B de beta-Cristalina/química , Cadeia B de beta-Cristalina/genética , Cadeia B de beta-Cristalina/metabolismo , Mutação , Multimerização Proteica , Estabilidade Proteica , Interações Hidrofóbicas e Hidrofílicas , Substituição de Aminoácidos
14.
J Mol Biol ; 436(6): 168461, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301805

RESUMO

Early phase of amyloid formation, where prefibrillar aggregates such as oligomers and protofibrils are often observed, is crucial for understanding pathogenesis. However, the detailed mechanisms of their formation have been difficult to elucidate because they tend to form transiently and heterogeneously. Here, we found that bovine insulin protofibril formation proceeds in a monodisperse manner, which allowed us to characterize the detailed early aggregation process by light scattering in combination with thioflavin T fluorescence and Fourier transform infrared spectroscopy. The protofibril formation was specific to bovine insulin, whereas no significant aggregation was observed in human insulin. The kinetic analysis combining static and dynamic light scattering data revealed that the protofibril formation process in bovine insulin can be divided into two steps based on fractal dimension. When modeling the experimental data based on Smoluchowski aggregation kinetics, an aggregation scheme consisting of initial fractal aggregation forming spherical oligomers and their subsequent end-to-end association forming protofibrils was clarified. Furthermore, the analysis of temperature and salt concentration dependencies showed that the end-to-end association is the rate-limiting step, involving dehydration. The established model for protofibril formation, wherein oligomers are incorporated as a precursor, provides insight into the molecular mechanism by which protein molecules assemble during the early stage of amyloid formation.


Assuntos
Amiloide , Insulinas , Animais , Bovinos , Humanos , Amiloide/química , Insulinas/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Am Chem Soc ; 135(30): 11032-9, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23822587

RESUMO

Adhesamine is an organic small molecule that promotes adhesion and growth of cultured human cells by binding selectively to heparan sulfate on the cell surface. The present study combined chemical, physicochemical, and cell biological experiments, using adhesamine and its analogues, to examine the mechanism by which this dumbbell-shaped, non-peptidic molecule induces physiologically relevant cell adhesion. The results suggest that multiple adhesamine molecules cooperatively bind to heparan sulfate and induce its assembly, promoting clustering of heparan sulfate-bound syndecan-4 on the cell surface. A pilot study showed that adhesamine improved the viability and attachment of transplanted cells in mice. Further studies of adhesamine and other small molecules could lead to the design of assembly-inducing molecules for use in cell biology and cell therapy.


Assuntos
Heparitina Sulfato/metabolismo , Piperazinas/química , Piperazinas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dimerização , Desenho de Fármacos , Humanos , Masculino , Camundongos , Modelos Moleculares , Piperazinas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Sindecanas/química
16.
Biomacromolecules ; 14(9): 3223-30, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23865684

RESUMO

In contrast to the success in artificial DNA- and peptide-based nanostructures, the ability of polysaccharides to self-assemble into one-, two-, and three-dimensional nanostructures are limited. Here, we describe a strategy for designing and fabricating nanorods using a regioselectively functionalized cellulose derivative at the air-water interface in a stepwise manner. A semisynthetic chlorophyll derivative, pyro-pheophorbide a, was partially introduced into the C-6 position of the cellulose backbone for the design of materials with specific optical properties. Remarkably, controlled formation of cellulose nanorods can be achieved, producing light-harvesting nanorods that display a larger bathochromic shift than their solution counterparts. The results presented here demonstrate that the self-assembly of functionalized polysaccharides on surfaces could lead the nanostructures mimicking the naturally occurring chloroplasts.


Assuntos
Celulose/análogos & derivados , Celulose/química , Clorofila/análogos & derivados , Nanotubos/química , Silicatos de Alumínio/química , Fontes de Energia Bioelétrica , Clorofila/química , Eletrodos , Ligação de Hidrogênio , Nanotubos/efeitos da radiação , Propriedades de Superfície
17.
J Appl Crystallogr ; 56(Pt 3): 624-632, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284265

RESUMO

Aggregates cause a fatal problem in the structural analysis of a biomacro-mol-ecule in solution using small-angle X-ray or neutron scattering (SAS): they deteriorate the scattering profile of the target molecule and lead to an incorrect structure. Recently, an integrated method of analytical ultracentrifugation (AUC) and SAS, abbreviated AUC-SAS, was developed as a new approach to overcome this problem. However, the original version of AUC-SAS does not offer a correct scattering profile of the target molecule when the weight fraction of aggregates is higher than ca 10%. In this study, the obstacle point in the original AUC-SAS approach is identified. The improved AUC-SAS method is then applicable to a solution with a relatively larger weight fraction of aggregates (≤20%).

18.
J Biochem ; 174(4): 383-389, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37419501

RESUMO

Vitamin Ks are expected to contribute bone and cardiovascular health. Especially, menaquinone-7 has a higher bioavailability and a longer half-life than other vitamin Ks in the human body. However, their low water-solubility limits their application. On the other hand, Bacillus subtilis natto produces a water-soluble complex, which comprises menaquinone-7 and peptides. The peptide named K-binding factor (KBF) has been reported as the main component of the complex. In the present, the structural characteristics of KBF were studied. Mass spectrometry showed significant peaks at m/z = 1050, while the previous PAGE suggested that molecular weight of KBF was ~ 3k. Amino acid analysis revealed that the 1k peptides were the various combinations of nine amino acids, among which Asx, Glx, Val, Leu and Met were found to be the most abundant. The peptides could serve as detergent properties. The 1k peptides could be isolated by reverse-phase high performance liquid chromatography. The bundle of three 1k detergent-like peptides would participate to the micelle structure containing menqauinone-7 inside. In conclusion, a basic unit of KBF would be the ~ 1k peptides, and the three basic unit assemble to the ~ 3k bundle, then the bundle form a water-soluble micelle including menqauinone-7 inside.


Assuntos
Bacillus subtilis , Alimentos de Soja , Humanos , Bacillus subtilis/metabolismo , Detergentes/metabolismo , Micelas , Vitamina K 2/metabolismo , Aminoácidos/metabolismo , Vitaminas/metabolismo
19.
Life (Basel) ; 12(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35629343

RESUMO

Understanding protein functions requires not only static but also dynamic structural information. Incoherent quasi-elastic neutron scattering (QENS), which utilizes the highly incoherent scattering ability of hydrogen, is a powerful technique for revealing the dynamics of proteins in deuterium oxide (D2O) buffer solutions. The background scattering of sample cells suitable for aqueous protein solution samples, conducted with a neutron backscattering spectrometer, was evaluated. It was found that the scattering intensity of an aluminum sample cell coated with boehmite using D2O was lower than that of a sample cell coated with regular water (H2O). The D2O-Boehmite coated cell was used for the QENS measurement of a 0.8 wt.% aqueous solution of an intrinsically disordered protein in an intrinsically disordered region of a helicase-associated endonuclease for a fork-structured type of DNA. The cell was inert against aqueous samples at 283-363 K. In addition, meticulous attention to cells with small individual weight differences and the positional reproducibility of the sample cell relative to the spectrometer neutron beam position enabled the accurate subtraction of the scattering profiles of the D2O buffer and the sample container. Consequently, high-quality information on protein dynamics could be extracted from dilute protein solutions.

20.
Sci Rep ; 12(1): 9970, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705644

RESUMO

Solving structural ensembles of flexible biomolecules is a challenging research area. Here, we propose a method to obtain possible structural ensembles of a biomolecule based on small-angle X-ray scattering (SAXS) and molecular dynamics simulations. Our idea is to clip a time series that matches a SAXS profile from a simulation trajectory. To examine its practicability, we applied our idea to a multi-domain protein ER-60 and successfully extracted time series longer than 1 micro second from trajectories of coarse-grained molecular dynamics simulations. In the extracted time series, the domain conformation was distributed continuously and smoothly in a conformational space. Preferred domain conformations were also observed. Diversity among scattering curves calculated from each ER-60 structure was interpreted to reflect an open-close motion of the protein. Although our approach did not provide a unique solution for the structural ensemble of the biomolecule, each extracted time series can be an element of the real behavior of ER-60. Considering its low computational cost, our approach will play a key role to identify biomolecular dynamics by integrating SAXS, simulations, and other experiments.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Proteínas/química , Espalhamento a Baixo Ângulo , Fatores de Tempo , Difração de Raios X , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa