Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 16(10): e1008946, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33085724

RESUMO

During internalization and trafficking, human papillomavirus (HPV) moves from the cell surface to the endosome where the transmembrane protease γ-secretase promotes insertion of the viral L2 capsid protein into the endosome membrane. Protrusion of L2 through the endosome membrane into the cytosol allows the recruitment of cytosolic host factors that target the virus to the Golgi en route for productive infection. How endosome-localized HPV is delivered to γ-secretase, a decisive infection step, is unclear. Here we demonstrate that cytosolic p120 catenin, likely via an unidentified transmembrane protein, interacts with HPV at early time-points during viral internalization and trafficking. In the endosome, p120 is not required for low pH-dependent disassembly of the HPV L1 capsid protein from the incoming virion. Rather, p120 is required for HPV to interact with γ-secretase-an interaction that ensures the virus is transported along a productive route. Our findings clarify an enigmatic HPV infection step and provide critical insights into HPV infection that may lead to new therapeutic strategies against HPV-induced diseases.


Assuntos
Alphapapillomavirus/patogenicidade , Cateninas/metabolismo , Infecções por Papillomavirus/virologia , Internalização do Vírus , Alphapapillomavirus/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas do Capsídeo/metabolismo , Endossomos/metabolismo , Células HeLa/virologia , Humanos , Membranas Intracelulares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Transporte Proteico/fisiologia , Vírion/metabolismo
2.
PLoS Pathog ; 13(6): e1006439, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28614383

RESUMO

The molecular mechanism by which non-enveloped viruses penetrate biological membranes remains enigmatic. The non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and cause infection. We previously demonstrated that SV40 creates its own membrane penetration structure by mobilizing select transmembrane proteins to distinct puncta in the ER membrane called foci that likely function as the cytosol entry sites. How these ER membrane proteins reorganize into the foci is unknown. B12 is a transmembrane J-protein that mobilizes into the foci to promote cytosol entry of SV40. Here we identify two closely related ER membrane proteins Erlin1 and Erlin2 (Erlin1/2) as B12-interaction partners. Strikingly, SV40 recruits B12 to the foci by inducing release of this J-protein from Erlin1/2. Our data thus reveal how a non-enveloped virus promotes its own membrane translocation by triggering the release and recruitment of a critical transport factor to the membrane penetration site.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vírus 40 dos Símios/fisiologia , Internalização do Vírus , Linhagem Celular , Retículo Endoplasmático/virologia , Técnicas de Silenciamento de Genes , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Infecções por Polyomavirus/metabolismo
3.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356524

RESUMO

Membrane penetration by nonenveloped viruses remains enigmatic. In the case of the nonenveloped polyomavirus simian virus 40 (SV40), the virus penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and then traffics to the nucleus to cause infection. We previously demonstrated that the cytosolic Hsc70-SGTA-Hsp105 complex is tethered to the ER membrane, where Hsp105 and SGTA facilitate the extraction of SV40 from the ER and transport of the virus into the cytosol. We now find that Hsc70 also ejects SV40 from the ER into the cytosol in a step regulated by SGTA. Although SGTA's N-terminal domain, which mediates homodimerization and recruits cellular adaptors, is dispensable during ER-to-cytosol transport of SV40, this domain appears to exert an unexpected post-ER membrane translocation function during SV40 entry. Our study thus establishes a critical function of Hsc70 within the Hsc70-SGTA-Hsp105 complex in promoting SV40 ER-to-cytosol membrane penetration and unveils a role of SGTA in controlling this step.IMPORTANCE How a nonenveloped virus transports across a biological membrane to cause infection remains mysterious. One enigmatic step is whether host cytosolic components are co-opted to transport the viral particle into the cytosol. During ER-to-cytosol membrane transport of the nonenveloped polyomavirus SV40, a decisive infection step, a cytosolic complex composed of Hsc70-SGTA-Hsp105 was previously shown to associate with the ER membrane. SGTA and Hsp105 have been shown to extract SV40 from the ER and transport the virus into the cytosol. We demonstrate here a critical role of Hsc70 in SV40 ER-to-cytosol penetration and reveal how SGTA controls Hsc70 to impact this process.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/virologia , Retículo Endoplasmático/virologia , Proteínas de Choque Térmico HSC70/metabolismo , Vírus 40 dos Símios/fisiologia , Internalização do Vírus , Animais , Transporte Biológico/fisiologia , Células COS , Proteínas de Transporte/genética , Linhagem Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Membranas Intracelulares/virologia , Chaperonas Moleculares/metabolismo , RNA Interferente Pequeno
4.
PLoS Pathog ; 11(8): e1005086, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26244546

RESUMO

Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event.


Assuntos
Retículo Endoplasmático/virologia , Interações Hospedeiro-Parasita/fisiologia , Infecções por Polyomavirus/metabolismo , Vírus 40 dos Símios/patogenicidade , Infecções Tumorais por Vírus/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Transdução de Sinais/fisiologia , Transfecção
5.
Uirusu ; 67(2): 121-132, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-30369536

RESUMO

Polyomavirus (Py) is a non-enveloped, double stranded DNA virus that causes a myriad of devastating human diseases for immunocompromised individuals. To cause infection, Py binds to its receptors on the plasma membrane, is endocytosed, and sorts to the endoplasmic reticulum (ER). From here, Py penetrates the ER membrane to reach the cytosol. Ensuing nuclear entry enables the virus to cause infection. How Py penetrates the ER membrane to access the cytosol is a decisive infection step that is enigmatic. In this review, I highlight the mechanisms by which host cell functions facilitate Py translocation across the ER membrane into the cytosol.

6.
J Virol ; 89(8): 4069-79, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653441

RESUMO

UNLABELLED: The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE: PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.


Assuntos
Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Membranas Intracelulares/metabolismo , Infecções por Polyomavirus/fisiopatologia , Vírus 40 dos Símios/fisiologia , Transporte Biológico/fisiologia , Citosol/virologia , Retículo Endoplasmático/virologia , Chaperona BiP do Retículo Endoplasmático , Imunofluorescência , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Humanos , Luciferases , Reação em Cadeia da Polimerase
7.
J Virol ; 89(17): 8897-908, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085143

RESUMO

UNLABELLED: The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a reaction important for its ER membrane transport and infection. ERdj5 also mediates human BK PyV infection. This enzyme cooperates with protein disulfide isomerase (PDI), a redox chaperone previously implicated in the unfolding of SV40, to fully stimulate membrane penetration. Negative-stain electron microscopy of ER-localized SV40 suggests that ERdj5 and PDI impart structural rearrangements to the virus. These conformational changes enable SV40 to engage BAP31, an ER membrane protein essential for supporting membrane penetration of the virus. Uncoupling of SV40 from BAP31 traps the virus in ER subdomains called foci, which likely serve as depots from where SV40 gains access to the cytosol. Our study thus pinpoints two ER lumenal factors that coordinately prime SV40 for ER membrane translocation and establishes a functional connection between lumenal and membrane events driving this process. IMPORTANCE: PyVs are established etiologic agents of many debilitating human diseases, especially in immunocompromised individuals. To infect cells at the cellular level, this virus family must penetrate the host ER membrane to reach the cytosol, a critical entry step. In this report, we identify two ER lumenal factors that prepare the virus for ER membrane translocation and connect these lumenal events with events on the ER membrane. Pinpointing cellular components necessary for supporting PyV infection should lead to rational therapeutic strategies for preventing and treating PyV-related diseases.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Vírus 40 dos Símios/patogenicidade , Animais , Vírus BK/patogenicidade , Transporte Biológico , Linhagem Celular , Chlorocebus aethiops , Dissulfetos/metabolismo , Proteínas de Choque Térmico HSP40/genética , Humanos , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Oxirredução , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Isomerases de Dissulfetos de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Internalização do Vírus
8.
PLoS Pathog ; 10(3): e1004007, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675744

RESUMO

Nonenveloped viruses undergo conformational changes that enable them to bind to, disrupt, and penetrate a biological membrane leading to successful infection. We assessed whether cytosolic factors play any role in the endoplasmic reticulum (ER) membrane penetration of the nonenveloped SV40. We find the cytosolic SGTA-Hsc70 complex interacts with the ER transmembrane J-proteins DnaJB14 (B14) and DnaJB12 (B12), two cellular factors previously implicated in SV40 infection. SGTA binds directly to SV40 and completes ER membrane penetration. During ER-to-cytosol transport of SV40, SGTA disengages from B14 and B12. Concomitant with this, SV40 triggers B14 and B12 to reorganize into discrete foci within the ER membrane. B14 must retain its ability to form foci and interact with SGTA-Hsc70 to promote SV40 infection. Our results identify a novel role for a cytosolic chaperone in the membrane penetration of a nonenveloped virus and raise the possibility that the SV40-induced foci represent cytosol entry sites.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Infecções por Polyomavirus/metabolismo , Vírus 40 dos Símios/fisiologia , Animais , Linhagem Celular , Cromatografia em Gel , Humanos , Imunoprecipitação , Membranas Intracelulares/metabolismo , Microscopia de Fluorescência , RNA Interferente Pequeno , Transfecção
9.
Annu Rev Microbiol ; 65: 287-305, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21682643

RESUMO

Many viruses and toxins disassemble to enter host cells and cause disease. These conformational changes must be orchestrated temporally and spatially during entry to avoid premature disassembly leading to nonproductive pathways. Although viruses and toxins are evolutionarily distinct toxic agents, emerging findings in their respective fields have revealed that the cellular locations supporting disassembly, the host factors co-opted during disassembly, the nature of the conformational changes, and the physiological function served by disassembly are strikingly conserved. Here, we examine some of the shared disassembly principles observed in model viruses and toxins. Where appropriate, we also underscore their differences. Our major intention is to draw together the fields of viral and toxin cell entry by using lessons gleaned from each field to inform and benefit one another.


Assuntos
Interações Hospedeiro-Patógeno , Toxinas Biológicas/metabolismo , Viroses/virologia , Fenômenos Fisiológicos Virais , Animais , Humanos , Toxinas Biológicas/genética , Montagem de Vírus , Vírus/genética , Vírus/metabolismo
11.
PLoS Pathog ; 7(5): e1002037, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21589906

RESUMO

Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer.


Assuntos
Citosol/virologia , Retículo Endoplasmático/virologia , Vírus 40 dos Símios/fisiologia , Vírion/fisiologia , Animais , Transporte Biológico , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Chlorocebus aethiops , Citosol/metabolismo , Citosol/ultraestrutura , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Genoma Viral/genética , Imunoprecipitação , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Bicamadas Lipídicas/metabolismo , Microscopia Eletrônica , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno , Vírus 40 dos Símios/química , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/ultraestrutura , Vírion/química , Vírion/genética , Vírion/ultraestrutura
12.
J Virol Methods ; 296: 114244, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302862

RESUMO

Safety evaluation for the hepatitis E virus (HEV) is required for plasma fractionation products. Plasma-derived HEV (pHEV) is quite unique in that it is associated with a lipid membrane, which, when stripped during manufacturing processes, induces morphological changes in the virus, making it difficult to select proper HEV phenotypes for clearance studies. We developed a convenient system for the preparation of a high titer cell culture-derived HEV (cHEV). In this system, PLC/PRF/5 cells transfected with the wild-type HEV genome generated lipid membrane-associated cHEV for a long period even after cryopreservation. We also examined how this lipid membrane-associated cHEV can be used to verify the robustness of pHEV removal via 19-nm nanofiltration. Sodium-deoxycholate and trypsin (NaDOC/T) treatment not only dissolved lipid but also digested membrane-associated proteins from pHEV and cHEV, making the resulting cHEV particle smaller in size than any pHEV phenotypes generated by ethanol or solvent-detergent treatment in this study. In both 19-nm and 35-nm nanofiltration, cHEV behaved identically to pHEV. These results indicate that cHEV is a useful resource for viral clearance studies in term of availability, and the use of NaDOC/T-treated cHEV ensured robust pHEV removal capacity via 19-nm nanofiltration.


Assuntos
Vírus da Hepatite E , Hepatite E , Vírus , Técnicas de Cultura de Células , Hepatite E/tratamento farmacológico , Vírus da Hepatite E/genética , Humanos , Fenótipo , Plasma
13.
Mol Pharmacol ; 77(2): 262-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19903825

RESUMO

Nitrogen-containing bisphosphonates are pyrophosphate analogs that have long been the preferred prescription for treating osteoporosis. Although these drugs are considered inhibitors of prenylation and are believed to exert their effects on bone resorption by disrupting the signaling pathways downstream of prenylated small GTPases, this explanation seems to be insufficient. Because other classes of prenylation inhibitors have recently emerged as potential antiviral therapeutic agents, we first investigated here the effects of bisphosphonates on simian virus 40 and adenovirus infections and, to our surprise, found that viral infections are suppressed by bisphosphonates through a prenylation-independent pathway. By in-house affinity-capture techniques, dynamin-2 was identified as a new molecular target of bisphosphonates. We present evidence that certain bisphosphonates block endocytosis of adenovirus and a model substrate by inhibiting GTPase activity of dynamin-2. Hence, this study has uncovered a previously unknown mechanism of action of bisphosphonates and offers potential novel use for these drugs.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Difosfonatos/administração & dosagem , Sistemas de Liberação de Medicamentos , Dinamina II/fisiologia , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Osteoporose/metabolismo , Osteoporose/patologia , Animais , Conservadores da Densidade Óssea/farmacologia , Bovinos , Linhagem Celular , Difosfonatos/farmacologia , Sistemas de Liberação de Medicamentos/tendências , Dinamina II/antagonistas & inibidores , Células HeLa , Humanos , Camundongos , Osteoporose/tratamento farmacológico , Prenilação de Proteína/efeitos dos fármacos , Prenilação de Proteína/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
J Biol Chem ; 284(50): 34703-12, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19822519

RESUMO

The calcium bridge between the pentamers of polyoma viruses maintains capsid metastability. It has been shown that viral infection is profoundly inhibited by the substitution of lysine for glutamate in one calcium-binding residue of the SV40 capsid protein, VP1. However, it is unclear how the calcium bridge affects SV40 infectivity. In this in vitro study, we analyzed the influence of host cell components on SV40 capsid stability. We used an SV40 mutant capsid (E330K) in which lysine had been substituted for glutamate 330 in protein VP1. The mutant capsid retained the ability to interact with the SV40 cellular receptor GM1, and the internalized mutant capsid accumulated in caveolin-1-mediated endocytic vesicles and was then translocated to the endoplasmic reticulum (ER) region. However, when placed in ER-rich microsome, the mutant capsid retained its spherical structure in contrast to the wild type, which disassembled. Structural analysis of the mutant capsid with cryo-electron microscopy and image reconstruction revealed altered pentamer coordination, possibly as a result of electrostatic interaction, although its overall structure resembled that of the wild type. These results indicate that the calcium ion serves as a trigger at the pentamer interface, which switches on capsid disassembly, and that the failure of the E330K mutant capsid to disassemble is attributable to an inadequate triggering system. Our data also indicate that calcium depletion-induced SV40 capsid disassembly may occur in the ER region and that this is essential for successful SV40 infection.


Assuntos
Cálcio/metabolismo , Capsídeo , Vírus 40 dos Símios/metabolismo , Vírus 40 dos Símios/ultraestrutura , Internalização do Vírus , Animais , Sítios de Ligação , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Microscopia Crioeletrônica , Endocitose/fisiologia , Gangliosídeo G(M1)/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Vírus 40 dos Símios/genética
15.
Cell Rep ; 27(6): 1666-1674.e4, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067454

RESUMO

Although flaviviruses co-opt the function of the host endoplasmic reticulum (ER) membrane protein complex (EMC) during infection, a mechanistic explanation for this observation remains unclear. Here, we show that the EMC promotes biogenesis of dengue virus (DENV) and Zika virus (ZIKV) non-structural multi-pass transmembrane proteins NS4A and NS4B, which are necessary for viral replication. The EMC binds to NS4B and colocalizes with the DENV replication organelle. Mapping analysis reveals that the two N-terminal marginally hydrophobic domains of NS4B confer EMC dependency. Furthermore, altering the hydrophobicity of these two marginally hydrophobic domains relieves NS4B's EMC dependency. We demonstrate that NS4B biogenesis, but not its stability, is reduced in EMC-depleted cells. Our data suggest that the EMC acts as a multi-pass transmembrane chaperone required for expression of at least two virally encoded proteins essential for flavivirus infection and point to a shared vulnerability during the viral life cycle that could be exploited for antiviral therapy.


Assuntos
Vírus da Dengue/metabolismo , Dengue/virologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/virologia , Zika virus/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/metabolismo , Proteínas não Estruturais Virais/química , Replicação Viral
16.
J Biotechnol ; 134(1-2): 181-92, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18243389

RESUMO

The capsid of SV40 is regarded as a potential nano-capsule for delivery of biologically active materials. The SV40 capsid is composed of 72 pentamers of the VP1 major capsid protein and 72 copies of the minor coat proteins VP2/3. We have previously demonstrated that, when expressed in insect Sf9 cells by the baculovirus system, VP1 self-assembles into virus-like particles (VP1-VLPs), which are morphologically indistinguishable from the SV40 virion and can be easily purified. Here, we show that heterologous proteins fused to VP2/3 can be efficiently incorporated into the VP1-VLPs. Using EGFP as a model protein, we have optimized this encapsulation system and found that fusion to the C-terminus of VP2/3 is preferable and that the C-terminal VP1-interaction domain of VP2/3 is sufficient for incorporation into VLPs. The VLPs encapsulating EGFP retain the ability to attach to the cell surface and enter the cells. Using this system, we have encapsulated yeast cytosine deaminase (yCD), a prodrug-modifying enzyme that converts 5-fluorocytosine to 5-fluorouracil, into VLPs. When CV-1 cells are challenged by the yCD-encapsulating VLPs, they become sensitive to 5-fluorocytosine-induced cell death. Therefore, proteins of interest can be encapsulated in VP1-VLPs by fusion to VP2/3 and successfully delivered to cells.


Assuntos
Proteínas do Capsídeo/genética , Nanotecnologia/métodos , Vírus 40 dos Símios/genética , Baculoviridae/genética , Baculoviridae/ultraestrutura , Proteínas do Capsídeo/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Modelos Biológicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vírus 40 dos Símios/ultraestrutura
17.
J Biotechnol ; 135(4): 385-92, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18588926

RESUMO

Viral capsids of simian virus 40 (SV40) are highly efficient gene delivery vehicles that infect a broad range of cells and tissues. To develop a controlled, cell type-specific delivery system, we sought to display foreign peptides on the capsid surface by genetically manipulating the major capsid protein Vp1. Here we report the identification of two sites within the surface loops of Vp1 that can accommodate foreign peptides in such a way that the foreign peptides are displayed on the surface of the virus-like particles (VLPs) without interfering with VLP assembly or the packaging of viral DNA. Insertion of Flag-tags but not RGD integrin-binding motifs at these sites strongly inhibited cell attachment of VLPs, which normally associate with host cells through cell surface molecules such as major histocompatibility complex (MHC) class I and ganglioside GM1. Instead, VLPs carrying the RGD motifs bound to integrin in vitro and to the cell surface in an RGD-dependent manner. Thus, insertion of foreign sequences into the surface loops of Vp1 can reduce natural virus-cell interactions and even confer an ability to bind to a new target receptor. This study demonstrates the potential usefulness of this strategy for the development of novel delivery vehicles with different cell tropisms.


Assuntos
Peptídeos/metabolismo , Vírus 40 dos Símios/metabolismo , Vírion/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Proteínas do Capsídeo/metabolismo , Adesão Celular , Chlorocebus aethiops , Empacotamento do DNA , DNA Viral/metabolismo , Glicina , Integrina alfaVbeta3/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas Mutantes/metabolismo , Oligopeptídeos , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
18.
J Cell Biol ; 217(10): 3545-3559, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30006461

RESUMO

Despite their importance as human pathogens, entry of human papillomaviruses (HPVs) into cells is poorly understood. The transmembrane protease γ-secretase executes a crucial function during the early stages of HPV infection, but the role of γ-secretase in infection and the identity of its critical substrate are unknown. Here we demonstrate that γ-secretase harbors a previously uncharacterized chaperone function, promoting low pH-dependent insertion of the HPV L2 capsid protein into endosomal membranes. Upon membrane insertion, L2 recruits the cytosolic retromer, which enables the L2 viral genome complex to enter the retrograde transport pathway and traffic to the Golgi en route for infection. Although a small fraction of membrane-inserted L2 is also cleaved by γ-secretase, this proteolytic event appears dispensable for HPV infection. Our findings demonstrate that γ-secretase is endowed with an activity that can promote membrane insertion of L2, thereby targeting the virus to the productive infectious pathway.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas do Capsídeo/genética , Endossomos/genética , Endossomos/metabolismo , Endossomos/patologia , Endossomos/virologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Complexo de Golgi/virologia , Células HEK293 , Células HeLa , Papillomavirus Humano 16/genética , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Membranas Intracelulares/patologia , Membranas Intracelulares/virologia , Chaperonas Moleculares/genética , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Proteólise
19.
J Biochem ; 141(2): 279-86, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17283011

RESUMO

Virus-like particles (VLPs), a promising next-generation drug delivery vehicle, can be formed in vitro using a recombinant viral capsid protein VP1 from SV40. Seventy-two VP1 pentamers interconnect to form the T = 7d lattice of SV40 capsids, through three types of C-terminal interactions, alpha-alpha'-alpha'', beta-beta' and gamma-gamma. These appear to require VP1 conformational switch, which involve in particular the region from amino acids 301-312 (herein Region I). Here we show that progressive deletions from the C-terminus of VP1, up to 34 amino acids, cause size and shape variations in the resulting VLPs, including tubular formation, whereas deletions beyond 34 amino acids simply blocked VP1 self-assembly. Mutants carrying in Region I point mutations predicted to disrupt alpha-alpha'-alpha''-type and/or beta-beta'-type interactions formed small VLPs resembling T = 1 symmetry. Chimeric VP1, in which Region I of SV40 VP1 was substituted with the homologous region from VP1 of other polyomaviruses, assembled only into small VLPs. Together, our results show the importance of the integrity of VP1 C-terminal region and the specific amino acid sequences within Region I in the assembly of normal VLPs. By understanding how to alter VLP sizes and shapes contributes to the development of drug delivery systems using VLPs.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Vírus 40 dos Símios/química , Animais , Capsídeo/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Modelos Moleculares , Mutação , Polyomavirus/química , Polyomavirus/genética , Spodoptera/citologia
20.
Mol Biol Cell ; 27(10): 1650-62, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27030672

RESUMO

When a protein misfolds in the endoplasmic reticulum (ER), it retrotranslocates to the cytosol and is degraded by the proteasome via a pathway called ER-associated degradation (ERAD). To initiate ERAD, ADP-BiP is often recruited to the misfolded client, rendering it soluble and translocation competent. How the misfolded client is subsequently released from BiP so that it undergoes retrotranslocation, however, remains enigmatic. Here we demonstrate that the ER-resident nucleotide exchange factor (NEF) Grp170 plays an important role during ERAD of the misfolded glycosylated client null Hong Kong (NHK). As a NEF, Grp170 triggers nucleotide exchange of BiP to generate ATP-BiP. ATP-BiP disengages from NHK, enabling it to retrotranslocate to the cytosol. We demonstrate that Grp170 binds to Sel1L, an adapter of the transmembrane Hrd1 E3 ubiquitin ligase postulated to be the retrotranslocon, and links this interaction to Grp170's function during ERAD. More broadly, Grp170 also promotes degradation of the nonglycosylated transthyretin (TTR) D18G misfolded client. Our findings thus establish a general function of Grp170 during ERAD and suggest that positioning this client-release factor at the retrotranslocation site may afford a mechanism to couple client release from BiP and retrotranslocation.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Glicosilação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Pré-Albumina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa