Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Environ Res ; 214(Pt 1): 113809, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35798267

RESUMO

Wastewater based epidemiology is recognized as one of the monitoring pillars, providing essential information for pandemic management. Central in the methodology are data modelling concepts for both communicating the monitoring results but also for analysis of the signal. It is due to the fast development of the field that a range of modelling concepts are used but without a coherent framework. This paper provides for such a framework, focusing on robust and simple concepts readily applicable, rather than applying latest findings from e.g., machine learning. It is demonstrated that data preprocessing, most important normalization by means of biomarkers and equal temporal spacing of the scattered data, is crucial. In terms of the latter, downsampling to a weekly spaced series is sufficient. Also, data smoothing turned out to be essential, not only for communication of the signal dynamics but likewise for regressions, nowcasting and forecasting. Correlation of the signal with epidemic indicators requires multivariate regression as the signal alone cannot explain the dynamics but - for this case study - multiple linear regression proofed to be a suitable tool when the focus is on understanding and interpretation. It was also demonstrated that short term prediction (7 days) is accurate with simple models (exponential smoothing or autoregressive models) but forecast accuracy deteriorates fast for longer periods.


Assuntos
COVID-19 , SARS-CoV-2 , Previsões , Humanos , Pandemias , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Mol Ecol ; 30(2): 438-450, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219564

RESUMO

Most commonly, next generation sequencing-based microbiome studies are performed on the total DNA (totDNA) pool; however, this consists of extracellular- (exDNA) and intracellular (iDNA) DNA fractions. By investigating the microbiomes of different anaerobic digesters over time, we found that totDNA suggested lower species richness considering all and/or only common species and yielded fewer unique reads as compared to iDNA. Additionally, exDNA-derived sequences were more similar to those from totDNA than from iDNA and, finally, iDNA showed the best performance in tracking temporal changes in microbial communities. We postulate that abundant sequences present within the exDNA fraction mask the overall results of totDNA and provide evidence that exDNA has the potential to qualitatively bias microbiome studies at least in the anaerobic digester environment as it contains information about cells that were lysed hours or days ago. iDNA, however, was found to be more appropriate in providing reliable genetic information about potentially alive as well as rare microbes within the target habitat.


Assuntos
Microbiota , Anaerobiose , Archaea/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , RNA Ribossômico 16S
3.
J Environ Manage ; 298: 113479, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34385113

RESUMO

A globally increased demand for fuels and environmental concerns regarding fossil sources call for sustainable alternatives. Fast pyrolysis is a promising approach for converting different types of biomass to renewable Fast Pyrolysis Bio-Oil (FPBO) that can be used for heating, power generation and mobility. Side-products emerging from the process include low calorific gases and charcoal. Both are further combusted to generate energy for the process. From the charcoal, the process leaves behind fly ashes (FAs) that contain macro- and micronutrients. In this regard, FPBO-FAs might present valuable soil fertilizers, but also bear the risk of soil heavy metal (HM) contamination. In this study, the risk and potential benefit of FPBO-FAs derived from three different biomass sources (bark, forest residue and Miscanthus sp.) as soil amendments was tested. Twice, in autumn 2017 and 2018, FPBO-FAs were applied to the field (500 kg ash ha-1 y-1) in a grassland experiment. Neither physico-chemical and microbiological soil properties nor plant yield were affected following FPBO-FAs application. Seasonal differences and changes from year to year, however, were evident, both for some soil and plant properties. The lack of effects on (i) plant yield, (ii) soil microbiological and physicochemical properties, (iii) heavy metal concentrations in soil and plant suggest that the product may safely be applied. The fact that these field-trial results are in discordance with previous greenhouse trials suggest, however, that long-term trials would be needed.


Assuntos
Pirólise , Poluentes do Solo , Biomassa , Cinza de Carvão , Óleos de Plantas , Polifenóis , Solo , Poluentes do Solo/análise
4.
Water Sci Technol ; 84(6): 1324-1339, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34559069

RESUMO

In the case of SARS-CoV-2 pandemic management, wastewater-based epidemiology aims to derive information on the infection dynamics by monitoring virus concentrations in the wastewater. However, due to the intrinsic random fluctuations of the viral signal in wastewater caused by several influencing factors that cannot be determined in detail (e.g. dilutions; number of people discharging; variations in virus excretion; water consumption per day; transport and fate processes in sewer system), the subsequent prevalence analysis may result in misleading conclusions. It is thus helpful to apply data filtering techniques to reduce the noise in the signal. In this paper we investigate 13 smoothing algorithms applied to the virus signals monitored in four wastewater treatment plants in Austria. The parameters of the algorithms have been defined by an optimization procedure aiming for performance metrics. The results are further investigated by means of a cluster analysis. While all algorithms are in principle applicable, SPLINE, Generalized Additive Model and Friedman's Super Smoother are recognized as superior methods in this context (with the latter two having a tendency to over-smoothing). A first analysis of the resulting datasets indicates the positive effect of filtering to the correlation of the viral signal to monitored incidence values.


Assuntos
COVID-19 , SARS-CoV-2 , Áustria , Humanos , Águas Residuárias
5.
Crit Rev Biotechnol ; 39(4): 437-450, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30939940

RESUMO

Grapes are one of the most cultivated fruit crops worldwide. Either for wine or juice production, grape processing generates a large amount of residues that must be treated, disposed of or reused properly to reduce their pollution load before being applied to the soil. In this review, a special focus is given to the treatment and valorization of the winemaking by-product like grape marc via anaerobic digestion, composting and vermicomposting at laboratory, pilot, and industrial scales. The impact of the final products (digestates, composts, and vermicomposts) on soil properties is briefly addressed. Moreover, the role of grape marc and seeds as a valuable source of natural phytochemicals that include polyphenols and other bioactive compounds of interest for pharmaceutical, cosmetic, and food industries is also discussed. This is of paramount importance given the fact that sustainability requires the use of management and valorization strategies that allow the recovery of valuable compounds (e.g. antioxidants) with minimum disposal of waste streams.


Assuntos
Indústria Alimentícia , Compostos Fitoquímicos/química , Vitis , Vinho , Frutas/química , Humanos , Resíduos Industriais , Polifenóis/química , Sementes/química
6.
Soil Biol Biochem ; 135: 28-37, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31579268

RESUMO

The viability of carbonyl sulfide (COS) measurements for partitioning ecosystem-scale net carbon dioxide (CO2) fluxes into photosynthesis and respiration critically depends on our knowledge of non-leaf sinks and sources of COS in ecosystems. We combined soil gas exchange measurements of COS and CO2 with next-generation sequencing technology (NGS) to investigate the role of soil microbiota for soil COS exchange. We applied different treatments (litter and glucose addition, enzyme inhibition and gamma sterilization) to soil samples from a temperate grassland to manipulate microbial composition and activity. While untreated soil was characterized by consistent COS uptake, other treatments reduced COS uptake and even turned the soil into a net COS source. Removing biotic processes through sterilization led to positive or zero fluxes. We used NGS to link changes in the COS response to alterations in the microbial community composition, with bacterial data having a higher explanatory power for the measured COS fluxes than fungal data. We found that the genera Arthrobacter and Streptomyces were particularly abundant in samples exhibiting high COS emissions. Our results indicate co-occurring abiotic production and biotic consumption of COS in untreated soil, the latter linked to carbonic anhydrase activity, and a strong dependency of the COS flux on the activity, identity, abundance of and substrate available to microorganisms.

7.
Environ Microbiol ; 20(10): 3657-3670, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30003645

RESUMO

Deadwood decay employs a complex metabolism and provides carbon and nutrients for soils. Although being highly diverse, the contribution of the bacterial deadwood colonizing community is underexplored compared with the fungal one. Therefore, we performed an in-field mesocosm study and monitored the bacterial communities in decaying experimental Picea abies wood blocks and their underlying soil on north- and south- exposed slopes in the Italian Alps over a 2-year period. The faster deadwood decay at the south-facing slope was associated with a higher bacterial richness and a higher number of specialist operational taxonomic units (OTUs) which were more strongly correlated to environmental parameters than other bacterial community members. With progressing decay, the wood and soil bacterial communities became more similar in terms of richness, diversity and evenness and especially at the south-facing slope, they also became more similar in terms of community composition. Exposure-specific OTUs suggest wood-soil interaction. However, despite the strong influence of exposure on the soil bacterial communities, the P. abies wood blocks shared a comparably high number of OTUs with the soil irrespective of the slope. At finer taxonomic scale, we identified Pseudomonas, Microbacteria, Sphingomonas, Xanthomonas, Methylovirgula and Burkholderia as decay associated, although their functional role needs further studies.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Picea/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Solo/química , Microbiologia do Solo , Fatores de Tempo , Madeira/microbiologia
8.
Environ Microbiol ; 20(7): 2386-2396, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687609

RESUMO

The importance of assembly processes in shaping biological communities is poorly understood, especially for microbes. Here, we report on the forces that structure soil bacterial communities along a 2000 m elevational gradient. We characterized the relative importance of habitat filtering and competition on phylogenetic structure and turnover in bacterial communities. Bacterial communities exhibited a phylogenetically clustered pattern and were more clustered with increasing elevation. Biotic factors (i.e., relative abundance of dominant bacterial lineages) appeared to be most important to the degree of clustering, evidencing the role of the competitive ability of entire clades in shaping the communities. Phylogenetic turnover showed the greatest correlation to elevation. After controlling the elevation, biotic factors showed greater correlation to phylogenetic turnover than all the habitat variables (i.e., climate, soil and vegetation). Structural equation modelling also identified that elevation and soil organic matter exerted indirect effects on phylogenetic diversity and turnover by determining the dominance of microbial competitors. Our results suggest that competition among bacterial taxa induced by soil carbon contributes to the phylogenetic pattern across elevational gradient in the Tibetan Plateau. This highlights the importance of considering not only abiotic filtering but also biotic interactions in soil bacterial communities across stressful elevational gradients.


Assuntos
Bactérias/classificação , Microbiologia do Solo , Fenômenos Fisiológicos Bacterianos , Clima , Ecossistema , Microbiota , Filogenia , Solo
9.
Appl Microbiol Biotechnol ; 102(15): 6343-6356, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858957

RESUMO

Extracellular DNA (exDNA) is abundant in many habitats, including soil, sediments, oceans and freshwater as well as the intercellular milieu of metazoa. For a long time, its origin has been assumed to be mainly lysed cells. Nowadays, research is collecting evidence that exDNA is often secreted actively and is used to perform a number of tasks, thereby offering an attractive target or tool for biotechnological, medical, environmental and general microbiological applications. The present review gives an overview on the main research areas dealing with exDNA, depicts its inherent origins and functions and deduces the potential of existing and emerging exDNA-based applications. Furthermore, it provides an overview on existing extraction methods and indicates common pitfalls that should be avoided whilst working with exDNA.


Assuntos
DNA/metabolismo , Meio Ambiente , Espaço Extracelular/química , DNA/análise , DNA/isolamento & purificação , Técnicas Genéticas/normas , Técnicas Genéticas/tendências , Pesquisa/tendências
10.
Appl Microbiol Biotechnol ; 102(6): 2885-2898, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423636

RESUMO

The ubiquity and relevance of extracellular DNA (exDNA) are well-known and increasingly gaining importance in many fields of application such as medicine and environmental microbiology. Although sources and types of exDNA are manifold, ratios of specific DNA-molecules inside and outside of living cells can give reliable information about the activity of entire systems and of specific microbial groups or species. Here, we introduce a method to discriminate between internal (iDNA), as well as bound and free exDNA, and evaluate various DNA fractions and related ratios (ex:iDNA) regarding their applicability to be used as a fast, convenient, and reliable alternative to more tedious RNA-based activity measurements. In order to deal with microbial consortia that can be regulated regarding their activity, we tested and evaluated the proposed method in comparison to sophisticated dehydrogenase- and RNA-based activity measurements with two anaerobic microbial consortia (anaerobic fungi and syntrophic archaea and a microbial rumen consortium) and three levels of resolution (overall activity, total bacteria, methanogenic archaea). Furthermore, we introduce a 28S rRNA gene-specific primer set and qPCR protocol, targeting anaerobic fungi (Neocallimastigomycota). Our findings show that the amount of actively released free exDNA (fDNA) strongly correlates with different activity measurements and is thus suggested to serve as a proxy for microbial activity.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , DNA Arqueal/análise , DNA Bacteriano/análise , DNA Fúngico/análise , Fungos/crescimento & desenvolvimento , Técnicas Microbiológicas/métodos , Aerobiose , Anaerobiose , Animais , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Análise por Conglomerados , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microbiologia Ambiental , Fungos/genética , Fungos/metabolismo , Consórcios Microbianos , Filogenia , RNA Ribossômico 28S/genética , Rúmen/microbiologia , Análise de Sequência de DNA
11.
Biofouling ; 34(5): 519-531, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29781294

RESUMO

Cooling and lubrication agents like triethanolamine (TEA) are essential for many purposes in industry. Due to biodegradation, they need continuous replacement, and byproducts of degradation may be toxic. This study investigates an industrial (1,200 m³) cooling-lubrication circuit (CLC) that has been in operation for 20 years and is supposedly in an ecological equilibrium, thus offering a unique habitat. Next-generation (Illumina Miseq 16S rRNA amplicon) sequencing was used to profile the CLC-based microbiota and relate it to TEA and bicine dynamics at the sampling sites, influent, machine rooms, biofilms and effluent. Pseudomonas pseudoalcaligenes dominated the effluent and influent sites, while Alcaligenes faecalis dominated biofilms, and both species were identified as the major TEA degrading bacteria. It was shown that a 15 min heat treatment at 50°C was able to slow down the growth of both species, a promising option to control TEA degradation at large scale.


Assuntos
Biofilmes/crescimento & desenvolvimento , Etanolaminas/análise , Microbiota , Microbiologia da Água , Alcaligenes faecalis/efeitos dos fármacos , Alcaligenes faecalis/crescimento & desenvolvimento , Biodegradação Ambiental , Microbiota/efeitos dos fármacos , Microbiota/genética , Pseudomonas pseudoalcaligenes/efeitos dos fármacos , Pseudomonas pseudoalcaligenes/crescimento & desenvolvimento , RNA Ribossômico 16S/genética
12.
Appl Microbiol Biotechnol ; 99(7): 3029-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652656

RESUMO

Limited availability of resources and increased amounts of waste coupled with an ever-increasing demand for raw materials are typical characteristics of our times. As such, there is an urgent need to accordingly update waste treatment technology. The aim of this study was to determine whether a separate treatment of the liquid and the solid fraction of biowaste could enhance overall efficiency. Liquid fractions obtained from two different separation procedures were fermented at a pH of 5 and uncontrolled pH conditions for 72 h. The fermentation conditions leading to highest lactic acid productivity and yield were evaluated. The substrates gained by both separation procedures showed efficient lactic acid production up to <25 g L(-1). The pH control increased lactic acid concentration by about 27 %. Furthermore, quantitative real-time PCR analyses revealed stronger Lactobacilli growth in these fermentations. As identified via Illumina sequencing Lactobacillus delbrueckii and its closest relatives seemed to drive the fermentation independent of the substrate. These results could help to improve today's resourcing concept by providing a separate treatment of the liquid and solid biowaste fraction.


Assuntos
Ácido Láctico/metabolismo , Lactobacillus delbrueckii/metabolismo , Consórcios Microbianos , Eliminação de Resíduos/métodos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Áustria , Fermentação , Concentração de Íons de Hidrogênio , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 16S , Reação em Cadeia da Polimerase em Tempo Real , Resíduos
13.
Anaerobe ; 29: 34-43, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24384307

RESUMO

Anaerobic fungi occupy the rumen and digestive tract of herbivores, where they play an important role in enzymatic digestion of lignocellulosic and cellulosic substrates, i.e. organic material that their hosts are unable to decompose on their own. In this study we isolated anaerobic fungi from a typical alpine herbivore, the Alpine ibex (C. ibex). Three fungal strains, either as pure culture (ST2) or syntrophic co-culture with methanogens (ST3, ST4) were successfully obtained and morphologically characterised by different microscopy- and staining-techniques and by rDNA ITS gene sequencing. The isolated fungi were identified as Neocallimastix frontalis (ST2) and Caecomyces communis (ST3 and ST4). We introduce a novel field of application for lactofuchsin-staining, combined with confocal laser scanning microscopy. This approach proved as an effective method to visualize fungal structures, especially in the presence of plant biomass, generally exhibiting high autofluorescence. Moreover, we could demonstrate that fungal morphology is subject to changes depending on the carbon source used for cultivation. Oxygen tolerance was confirmed for both, C. communis-cultures for up to three, and for the N. frontalis-isolate for up to 12 h, respectively. With PCR, FISH and an oligonucleotide microarray we found associated methanogens (mainly Methanobacteriales) for C. communis, but not for N. frontalis.


Assuntos
DNA Arqueal/genética , DNA Fúngico/genética , Metano/biossíntese , Methanobacteriales/metabolismo , Neocallimastigomycota/metabolismo , Anaerobiose , Animais , DNA Espaçador Ribossômico/genética , Fezes/microbiologia , Fermentação , Cabras/microbiologia , Methanobacteriales/classificação , Methanobacteriales/genética , Methanobacteriales/isolamento & purificação , Microscopia Confocal , Neocallimastigomycota/classificação , Neocallimastigomycota/genética , Neocallimastigomycota/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Rúmen/microbiologia , Análise de Sequência de DNA , Simbiose/fisiologia
14.
Sci Rep ; 14(1): 6732, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509181

RESUMO

Eminent in pandemic management is accurate information on infection dynamics to plan for timely installation of control measures and vaccination campaigns. Despite huge efforts in diagnostic testing of individuals, the underestimation of the actual number of SARS-CoV-2 infections remains significant due to the large number of undocumented cases. In this paper we demonstrate and compare three methods to estimate the dynamics of true infections based on secondary data i.e., (a) test positivity, (b) infection fatality and (c) wastewater monitoring. The concept is tested with Austrian data on a national basis for the period of April 2020 to December 2022. Further, we use the results of prevalence studies from the same period to generate (upper and lower bounds of) credible intervals for true infections for four data points. Model parameters are subsequently estimated by applying Approximate Bayesian Computation-rejection sampling and Genetic Algorithms. The method is then validated for the case study Vienna. We find that all three methods yield fairly similar results for estimating the true number of infections, which supports the idea that all three datasets contain similar baseline information. None of them is considered superior, as their advantages and shortcomings depend on the specific case study at hand.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Teorema de Bayes , Pandemias
15.
Crit Rev Microbiol ; 39(2): 139-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22694189

RESUMO

Slaughterhouse wastes are a potential reservoir of bacterial, viral, prion and parasitic pathogens, capable of infecting both animals and humans. A quick, cost effective and safe disposal method is thus essential in order to reduce the risk of disease following animal slaughter. Different methods for the disposal of such wastes exist, including composting, anaerobic digestion (AD), alkaline hydrolysis (AH), rendering, incineration and burning. Composting is a disposal method that allows a recycling of the slaughterhouse waste nutrients back into the earth. The high fat and protein content of slaughterhouse wastes mean however, that such wastes are an excellent substrate for AD processes, resulting in both the disposal of wastes, a recycling of nutrients (soil amendment with sludge), and in methane production. Concerns exist as to whether AD and composting processes can inactivate pathogens. In contrast, AH is capable of the inactivation of almost all known microorganisms. This review was conducted in order to compare three different methods of slaughterhouse waste disposal, as regards to their ability to inactivate various microbial pathogens. The intention was to investigate whether AD could be used for waste disposal (either alone, or in combination with another process) such that both energy can be obtained and potentially hazardous materials be disposed of.


Assuntos
Resíduos Industriais/análise , Viabilidade Microbiana , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Matadouros , Animais , Gerenciamento de Resíduos/instrumentação
16.
Int J Syst Evol Microbiol ; 63(Pt 1): 260-267, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22407790

RESUMO

A Gram-negative, rod-shaped, weakly motile, non-spore-forming bacterium (D9(T)) was isolated from the gut of Cylindroiulus fulviceps (Diplopoda) on 1/3-strength nutrient agar plates. On the basis of 16S rRNA gene sequence similarity, strain D9(T) was shown to be phylogenetically closely related to the type strain of Budvicia aquatica, the sole species of the genus Budvicia, family Enterobacteriaceae. The similarity of the 16S rRNA gene sequences of strain D9(T) and B. aquatica DSM 5075(T) was 98.4 %. Other strains that showed high pairwise similarities with the isolate belonged to the genus Yersinia: Y. frederiksenii ATCC 33641(T) (96.8 % 16S rRNA gene sequence similarity), Y. massiliensis CCUG 53443(T) (96.8 %), Y. pestis NCTC 5923(T) (96.8 %), Y. pseudotuberculosis ATCC 29833(T) (96.8 %), Y. similis CCUG 52882(T) (96.7 %) and Y. ruckeri ATCC 29473(T) (96.5 %). The similarities of sequences of the housekeeping genes rpoB, hsp60 and gyrB between strain D9(T) and B. aquatica DSM 5075(T) and other members of the Enterobacteriaceae were less than 94 %. Phylogenetic trees based on all four gene sequences unequivocally grouped the isolate with the type strain of B. aquatica and separately from the genus Yersinia. Cells contained the quinones Q-8, Q-7 and MK-8. The major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the DNA (48.3 mol%) and the whole-cell fatty acid composition of strain D9(T) (C(14 : 0), C(16 : 1)ω7c, C(16 : 0), cyclo-C(17 : 0) and C(18 : 1)ω7c as major components) were typical for members of the Enterobacteriaceae. DNA-DNA hybridization of strain D9(T) with B. aquatica DSM 5075(T) resulted in a relatedness of 30.4 %, indicating that the isolate did not belong to B. aquatica. Physiological tests allowed the phenotypic differentiation of strain D9(T) from B. aquatica DSM 5075(T) as well as from members of the genus Yersinia. From these results, it is concluded that strain D9(T) represents a novel species, for which the name Budvicia diplopodorum sp. nov. is proposed (type strain D9(T) =DSM 21983(T) = CCM 7845(T)). The description of the genus Budvicia is emended.


Assuntos
Artrópodes/microbiologia , Enterobacteriaceae/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Ácidos Graxos/análise , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Waste Manag Res ; 31(8): 829-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23831776

RESUMO

Wood ash addition to biogas plants represents an alternative to commonly used landfilling by improving the reactor performance, raising the pH and alleviating potential limits of trace elements. This study is the first on the effects of wood ash on reactor conditions and microbial communities in cattle slurry-based biogas reactors. General process parameters [temperature, pH, electrical conductivity, ammonia, volatile fatty acids, carbon/nitrogen (C/N), total solids (TS), volatile solids, and gas quantity and quality] were monitored along with molecular analyses of methanogens by polymerase chain reaction- denaturing gradient gel electrophoresis and modern microarrays (archaea and bacteria). A prompt pH rise was observed, as was an increase in C/N ratio and volatile fatty acids. Biogas production was inhibited, but recovered to even higher production rates and methane concentration after single amendment. High sulphur levels in the wood ash generated hydrogen sulphide and potentially hampered methanogenesis. Methanosarcina was the most dominant methanogen in all reactors; however, diversity was higher in ash-amended reactors. Bacterial groups like Firmicutes, Proteobacteria and Acidobacteria were favoured, which could improve the hydrolytic efficiency of the reactors. We recommend constant monitoring of the chemical composition of the used wood ash and suggest that ash amendment is adequate if added to the substrate at a rate low enough to allow adaptation of the microbiota (e.g. 0.25 g g(-1) TS). It could further help to enrich digestate with important nutrients, for example phosphorus, calcium and magnesium, but further experiments are required for the evaluation of wood ash concentrations that are tolerable for anaerobic digestion.


Assuntos
Biocombustíveis , Reatores Biológicos , Instalações de Eliminação de Resíduos , Madeira , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase
18.
Bioresour Technol ; 376: 128894, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931445

RESUMO

Enormous amounts of food waste (FW) are produced worldwide, requiring efficient disposal strategies, both economically and ecologically. Anaerobic digestion to produce biomethane is among the most promising strategies, but requires proper solutions for storage and delivery of the waste material. Here, a decentralized system for demand-oriented FW storage and its practical usability was assessed. FW was stored under batch and fed-batch strategies at 5 °C, 20 °C and 30 °C for 28 days. The results showed that FW can be stored without cooling since bacterially produced lactic acid rapidly stabilized the material and inactivated pathogens. While FW storage worked well under all storage conditions and strategies, 16S analysis revealed a distinct microbiota, which was highly characteristic for each storage temperature. Moreover, FW storage had no negative impact on methane yield and stored FW contained readily degradable substances for demand-oriented biogas production.


Assuntos
Microbiota , Eliminação de Resíduos , Anaerobiose , Alimentos , Reatores Biológicos , Metano , Biocombustíveis
19.
Sci Total Environ ; 873: 162149, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773921

RESUMO

Wastewater-based epidemiology is widely applied in Austria since April 2020 to monitor the SARS-CoV-2 pandemic. With a steadily increasing number of monitored wastewater facilities, 123 plants covering roughly 70 % of the 9 million population were monitored as of August 2022. In this study, the SARS-CoV-2 viral concentrations in raw sewage were analysed to infer short-term hospitalisation occupancy. The temporal lead of wastewater-based epidemiological time series over hospitalisation occupancy levels facilitates the construction of forecast models. Data pre-processing techniques are presented, including the approach of comparing multiple decentralised wastewater signals with aggregated and centralised clinical data. Time­lead quantification was performed using cross-correlation analysis and coefficient of determination optimisation approaches. Multivariate regression models were successfully applied to infer hospitalisation bed occupancy. The results show a predictive potential of viral loads in sewage towards Covid-19 hospitalisation occupancy, with an average lead time towards ICU and non-ICU bed occupancy between 14.8-17.7 days and 8.6-11.6 days, respectively. The presented procedure provides access to the trend and tipping point behaviour of pandemic dynamics and allows the prediction of short-term demand for public health services. The results showed an increase in forecast accuracy with an increase in the number of monitored wastewater treatment plants. Trained models are sensitive to changing variant types and require recalibration of model parameters, likely caused by immunity by vaccination and/or infection. The utilised approach displays a practical and rapidly implementable application of wastewater-based epidemiology to infer hospitalisation occupancy.


Assuntos
COVID-19 , SARS-CoV-2 , Estados Unidos , Humanos , COVID-19/epidemiologia , Águas Residuárias , Esgotos , Vigilância Epidemiológica Baseada em Águas Residuárias , Hospitalização
20.
Viruses ; 15(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851479

RESUMO

Since the start of the 2019 pandemic, wastewater-based epidemiology (WBE) has proven to be a valuable tool for monitoring the prevalence of SARS-CoV-2. With methods and infrastructure being settled, it is time to expand the potential of this tool to a wider range of pathogens. We used over 500 archived RNA extracts from a WBE program for SARS-CoV-2 surveillance to monitor wastewater from 11 treatment plants for the presence of influenza and norovirus twice a week during the winter season of 2021/2022. Extracts were analyzed via digital PCR for influenza A, influenza B, norovirus GI, and norovirus GII. Resulting viral loads were normalized on the basis of NH4-N. Our results show a good applicability of ammonia-normalization to compare different wastewater treatment plants. Extracts originally prepared for SARS-CoV-2 surveillance contained sufficient genomic material to monitor influenza A, norovirus GI, and GII. Viral loads of influenza A and norovirus GII in wastewater correlated with numbers from infected inpatients. Further, SARS-CoV-2 related non-pharmaceutical interventions affected subsequent changes in viral loads of both pathogens. In conclusion, the expansion of existing WBE surveillance programs to include additional pathogens besides SARS-CoV-2 offers a valuable and cost-efficient possibility to gain public health information.


Assuntos
COVID-19 , Influenza Humana , Norovirus , Humanos , Influenza Humana/epidemiologia , Norovirus/genética , Águas Residuárias , COVID-19/epidemiologia , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa