Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 142(10): 1840-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25926358

RESUMO

Homeoproteins of the Engrailed family are involved in the patterning of mesencephalic boundaries through a mechanism classically ascribed to their transcriptional functions. In light of recent reports on the paracrine activity of homeoproteins, including Engrailed, we asked whether Engrailed intercellular transfer was also involved in brain patterning and boundary formation. Using time-controlled activation of Engrailed combined with tools that block its transfer, we show that the positioning of the diencephalic-mesencephalic boundary (DMB) requires Engrailed paracrine activity. Both zebrafish Eng2a and Eng2b are competent for intercellular transfer in vivo, but only extracellular endogenous Eng2b, and not Eng2a, participates in DMB positioning. In addition, disruption of the Pbx-interacting motif in Engrailed, known to strongly reduce the gain-of-function phenotype, also downregulates Engrailed transfer, thus revealing an unsuspected participation of the Pbx interaction domain in this pathway.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Dev Biol ; 414(2): 133-41, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27158028

RESUMO

It is now becoming evident that hydrogen peroxide (H2O2), which is constantly produced by nearly all cells, contributes to bona fide physiological processes. However, little is known regarding the distribution and functions of H2O2 during embryonic development. To address this question, we used a dedicated genetic sensor and revealed a highly dynamic spatio-temporal pattern of H2O2 levels during zebrafish morphogenesis. The highest H2O2 levels are observed during somitogenesis and organogenesis, and these levels gradually decrease in the mature tissues. Biochemical and pharmacological approaches revealed that H2O2 distribution is mainly controlled by its enzymatic degradation. Here we show that H2O2 is enriched in different regions of the developing brain and demonstrate that it participates to axonal guidance. Retinal ganglion cell axonal projections are impaired upon H2O2 depletion and this defect is rescued by H2O2 or ectopic activation of the Hedgehog pathway. We further show that ex vivo, H2O2 directly modifies Hedgehog secretion. We propose that physiological levels of H2O2 regulate RGCs axonal growth through the modulation of Hedgehog pathway.


Assuntos
Orientação de Axônios/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Peróxido de Hidrogênio/metabolismo , Neurogênese/fisiologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Orientação de Axônios/fisiologia , Axônios/metabolismo , Catalase/metabolismo , Cisteína/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/análise , Transporte Proteico/efeitos dos fármacos , Células Ganglionares da Retina/ultraestrutura , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Peixe-Zebra/metabolismo
3.
Nat Commun ; 8(1): 969, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042541

RESUMO

We present speed out-of-phase imaging after optical modulation (OPIOM), which exploits reversible photoswitchable fluorophores as fluorescent labels and combines optimized periodic illumination with phase-sensitive detection to specifically retrieve the label signal. Speed OPIOM can extract the fluorescence emission from a targeted label in the presence of spectrally interfering fluorophores and autofluorescence. Up to four fluorescent proteins exhibiting a similar green fluorescence have been distinguished in cells either sequentially or in parallel. Speed OPIOM is compatible with imaging biological processes in real time in live cells. Finally speed OPIOM is not limited to microscopy but is relevant for remote imaging as well, in particular, under ambient light. Thus, speed OPIOM has proved to enable fast and quantitative live microscopic and remote-multiplexed fluorescence imaging of biological samples while filtering out noise, interfering fluorophores, as well as ambient light.Generally, fluorescence imaging needs to be done in a dark environment using molecules with spectrally separated emissions. Here, Quérard et al. develop a protocol for high-speed imaging and remote sensing of spectrally overlapping reversible photoswitchable fluorophores in ambient light.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Brassicaceae/genética , Desenho de Equipamento , Corantes Fluorescentes/análise , Análise de Fourier , Proteínas de Fluorescência Verde/análise , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Dispositivos Lab-On-A-Chip , Imagem Óptica/instrumentação , Plantas Geneticamente Modificadas , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética
4.
Nat Commun ; 8(1): 2173, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242600

RESUMO

The Peer Review File associated with this Article was updated shortly after publication to redact from the authors' point-by-point response a description of unpublished work describing how Speed OPIOM may in future be used to facilitate discrimination between FRET and direct excitation.

5.
Sci Rep ; 3: 2084, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23803955

RESUMO

A major issue in regenerative medicine is the role of injury in promoting cell plasticity. Here we explore the function of reactive oxygen species (ROS) induced through lesions in adult zebrafish. We show that ROS production, following adult fin amputation, is tightly regulated in time and space for at least 24 hours, whereas ROS production remains transient (2 hours) in mere wound healing. In regenerative tissue, ROS signaling triggers two distinct parallel pathways: one pathway is responsible for apoptosis, and the other pathway is responsible for JNK activation. Both events are involved in the compensatory proliferation of stump epidermal cells and are necessary for the progression of regeneration. Both events impact the Wnt, SDF1 and IGF pathways, while apoptosis only impacts progenitor marker expression. These results implicate oxidative stress in regeneration and provide new insights into the differences between healing and regeneration.


Assuntos
Proliferação de Células , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Animais , Sequência de Bases , Morte Celular , Primers do DNA , Ativação Enzimática , MAP Quinase Quinase 4/metabolismo , Reação em Cadeia da Polimerase , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa