Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(4): 1833-1842, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38167734

RESUMO

Trifunctional ORR/OER/HER catalysts are emerging for various sustainable energy storage and conversion technologies. For this function, employing materials with 1D structures leads to catalysts having limited surface area and structural robustness. Instead of 1D catalysts, heterostructured catalysts (i.e., catalysts consisting of interfaces created by combining diverse structural components) have attracted much attention due to their high efficiency. We have fabricated a directly grown 1D-1D heterostructured bimetallic N-doped carbon trifunctional catalyst based on Fe/Co bimetallic-organic frameworks, forming nanobrushes (FeCoNC-NB) with improved resistance to collapsing and substantial numbers of exposed active sites. The secondary 1D structure of this design contributes to creating interparticle conductive networks. By combining the brush-like heterostructure, FeCo alloy active sites, and N-doped carbon as support and for encapsulation of the metal, the catalyst features a high ORR Eonset value (1.046 V), low OER overpotential (363 mV), and comparable HER overpotential (254 mV) in alkaline electrolyte. Zn-air batteries with FeCoNC-NB demonstrate a power density of 195 mW cm-2 and a superior battery life of up to 350 h. Self-powered FeCoNC-NB-based water electrolyzers as energy conversion devices are also demonstrated. This work drives the progress of trifunctional catalysts based on heterostructured nonprecious metal N-doped carbon for energy storage and conversion developments.

2.
ACS Omega ; 6(50): 34866-34875, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963970

RESUMO

We report a highly stretchable sensor with low-concentration (1.5 wt %) single-walled carbon nanotubes (SWCNTs) on flexible polyether ester urethane (PEEU) yarn, fabricated using a low hydrothermal process at 90 °C. Although SWCNTs restrict the PEEU polymer chain mobility, the resulting ductility of our nanocomposites reduces only by 16.5% on average, initially from 667.3% elongation at break to 557.2%. The resulting electrical resistivity of our nanocomposites can be controlled systematically by the number of hydrothermal cycles. A high gauge factor value of 4.84 is achieved at a tensile strain below 100%, and it increases up to 28.5 with applying a tensile strain above 450%. We find that the piezoresistivity of our nanocomposite is sensitive to temperature variations of 25-85 °C due to the hopping effect, which promotes more charge transport at elevated temperatures. Our nanocomposites offer both a high sensitivity and a large strain sensing range, which is achieved with a relatively simple fabrication technique and low concentration of SWCNTs.

3.
Nanomaterials (Basel) ; 10(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260211

RESUMO

Magnetic reduced graphene oxide (MRGO) sheets were prepared by embedding Fe3O4 nanoparticles on polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride) (PDDA)-modified graphene oxide (GO) sheets for bacteria capture and destruction under a high-frequency magnetic field (HFMF). The characteristics of MRGO sheets were evaluated systematically by transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential measurement, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that magnetic nanoparticles (8-10 nm) were dispersed on MRGO sheets. VSM measurements confirmed the superparamagnetic characteristics of the MRGO sheets. Under HFMF exposure, the temperature of MRGO sheets increased from 25 to 42 °C. Furthermore, we investigated the capability of MRGO sheets to capture and destroy bacteria (Staphylococcus aureus). The results show that MRGO sheets could capture bacteria and kill them through an HFMF, showing a great potential in magnetic separation and antibacterial application.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa