Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Popul Health Metr ; 22(1): 12, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879515

RESUMO

BACKGROUND: Heterogeneity in national SARS-CoV-2 infection surveillance capabilities may compromise global enumeration and tracking of COVID-19 cases and deaths and bias analyses of the pandemic's tolls. Taking account of heterogeneity in data completeness may thus help clarify analyses of the relationship between COVID-19 outcomes and standard preparedness measures. METHODS: We examined country-level associations of pandemic preparedness capacities inventories, from the Global Health Security (GHS) Index and Joint External Evaluation (JEE), on SARS-CoV-2 infection and COVID-19 death data completion rates adjusted for income. Analyses were stratified by 100, 100-300, 300-500, and 500-700 days after the first reported case in each country. We subsequently reevaluated the relationship of pandemic preparedness on SARS-CoV-2 infection and age-standardized COVID-19 death rates adjusted for cross-country differentials in data completeness during the pre-vaccine era. RESULTS: Every 10% increase in the GHS Index was associated with a 14.9% (95% confidence interval 8.34-21.8%) increase in SARS-CoV-2 infection completion rate and a 10.6% (5.91-15.4%) increase in the death completion rate during the entire observation period. Disease prevention (infections: ß = 1.08 [1.05-1.10], deaths: ß = 1.05 [1.04-1.07]), detection (infections: ß = 1.04 [1.01-1.06], deaths: ß = 1.03 [1.01-1.05]), response (infections: ß = 1.06 [1.00-1.13], deaths: ß = 1.05 [1.00-1.10]), health system (infections: ß = 1.06 [1.03-1.10], deaths: ß = 1.05 [1.03-1.07]), and risk environment (infections: ß = 1.27 [1.15-1.41], deaths: ß = 1.15 [1.08-1.23]) were associated with both data completeness outcomes. Effect sizes of GHS Index on infection completion (Low income: ß = 1.18 [1.04-1.34], Lower Middle income: ß = 1.41 [1.16-1.71]) and death completion rates (Low income: ß = 1.19 [1.09-1.31], Lower Middle income: ß = 1.25 [1.10-1.43]) were largest in LMICs. After adjustment for cross-country differences in data completeness, each 10% increase in the GHS Index was associated with a 13.5% (4.80-21.4%) decrease in SARS-CoV-2 infection rate at 100 days and a 9.10 (1.07-16.5%) decrease at 300 days. For age-standardized COVID-19 death rates, each 10% increase in the GHS Index was with a 15.7% (5.19-25.0%) decrease at 100 days and a 10.3% (- 0.00-19.5%) decrease at 300 days. CONCLUSIONS: Results support the pre-pandemic hypothesis that countries with greater pandemic preparedness capacities have larger SARS-CoV-2 infection and mortality data completeness rates and lower COVID-19 disease burdens. More high-quality data of COVID-19 impact based on direct measurement are needed.


Assuntos
COVID-19 , Saúde Global , Preparação para Pandemia , Humanos , COVID-19/mortalidade , COVID-19/prevenção & controle , COVID-19/epidemiologia
2.
Biochem Cell Biol ; 100(3): 268-273, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290750

RESUMO

Fast, accessible, and high-quality deoxyribonucleic acid (DNA) is fundamental to advancement in the life sciences that will drive forward fields such as agriculture, energy, and medicine. Despite their importance in accelerating global progress, bioscience research and biotechnologies can also be misused, endangering humans, animals, and the environment. The ability to accidentally or deliberately endow or enhance the pathogenicity of biological systems is of particular concern. Access to DNA sequences with a clear potential for dual use should be limited to responsible and identifiable groups with legitimate uses. Yet, none of the 195 countries party to the International Health Regulations have national laws that mandate this type of screening. Many DNA providers voluntarily screen orders and absorb increased costs, but this practice is not universally adopted for a variety of reasons. This article explores the incentives and regulatory structures that can bring the screening coverage of DNA orders toward 100%, which may include expedited orders for approved customers, better tools and technology for more efficient screening, funding requirements that grantees use screened DNA, and early education in biosecurity aimed at researchers and students. Ultimately, an incentive-based multistakeholder approach to DNA screening can benefit researchers, industry, and global health security.


Assuntos
Disciplinas das Ciências Biológicas , Motivação , DNA/genética , Humanos , Pesquisadores
3.
BMJ Glob Health ; 8(7)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414431

RESUMO

BACKGROUND: Previous studies have observed that countries with the strongest levels of pandemic preparedness capacities experience the greatest levels of COVID-19 burden. However, these analyses have been limited by cross-country differentials in surveillance system quality and demographics. Here, we address limitations of previous comparisons by exploring country-level relationships between pandemic preparedness measures and comparative mortality ratios (CMRs), a form of indirect age standardisation, of excess COVID-19 mortality. METHODS: We indirectly age standardised excess COVID-19 mortality, from the Institute for Health Metrics and Evaluation modelling database, by comparing observed total excess mortality to an expected age-specific COVID-19 mortality rate from a reference country to derive CMRs. We then linked CMRs with data on country-level measures of pandemic preparedness from the Global Health Security (GHS) Index. These data were used as input into multivariable linear regression analyses that included income as a covariate and adjusted for multiple comparisons. We conducted a sensitivity analysis using excess mortality estimates from WHO and The Economist. RESULTS: The GHS Index was negatively associated with excess COVID-19 CMRs (table 2; ß= -0.21, 95% CI= -0.35 to -0.08). Greater capacities related to prevention (ß= -0.11, 95% CI= -0.22 to -0.00), detection (ß= -0.09, 95% CI= -0.19 to -0.00), response (ß = -0.19, 95% CI= -0.36 to -0.01), international commitments (ß= -0.17, 95% CI= -0.33 to -0.01) and risk environments (ß= -0.30, 95% CI= -0.46 to -0.15) were each associated with lower CMRs. Results were not replicated using excess mortality models that rely more heavily on reported COVID-19 deaths (eg, WHO and The Economist). CONCLUSION: The first direct comparison of COVID-19 excess mortality rates across countries accounting for under-reporting and age structure confirms that greater levels of preparedness were associated with lower excess COVID-19 mortality. Additional research is needed to confirm these relationships as more robust national-level data on COVID-19 impact become available.


Assuntos
COVID-19 , Humanos , Saúde Global , Renda , Pandemias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa