Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(16): 25731-25744, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614896

RESUMO

Optical Kerr effects induced by the propagation of high peak-power laser beams through real atmospheres have been a topic of interest to the nonlinear optics community for several decades. This paper proposes a new analytical model for predicting the filamentation/light channel onset distance in real atmospheres based on modulation instability model considerations. The normalized intensity increases exponentially as the beam propagates through the medium. It is hypothesized that this growth can be modeled as a weighted ratio of the Gaussian beam diameter at range to the lateral coherence radius and can be used to set the power ratio for an absorbing, turbulent, nonlinear media to estimate the beam collapse distance. Comparison of onset distance predictions with those found from computer simulation and deduced from field experiments will be presented. In addition, this model will be used with an analytical approach to quantify the expected radius of light channels resulting from self-focusing both with and without the production of a plasma filament. Finally, this paper will describe a set of 1.5-micron, variable focal length USPL field experiments. Comparisons of theoretical radius calculations to measurements from field experiments will be presented.

2.
Sci Adv ; 5(3): eaav6804, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30915398

RESUMO

Remote detection of a distant, shielded sample of radioactive material is an important goal, but it is made difficult by the finite spatial range of the decay products. Here, we present a proof-of-principle demonstration of a remote detection scheme using mid-infrared (mid-IR) (λ = 3.9 µm) laser-induced avalanche breakdown of air. In the scheme's most basic version, we observe on-off breakdown sensitivity to the presence of an external radioactive source. In another realization of the technique, we correlate the shift of the temporal onset of avalanche to the degree of seed ionization from the source. We present scaling of the interaction with laser intensity, verify observed trends with numerical simulations, and discuss the use of mid-IR laser-driven electron avalanche breakdown to detect radioactive material at range.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa