Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(2): 479-495, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31688962

RESUMO

Mixotrophic microorganisms are able to use organic carbon as well as inorganic carbon sources and thus, play an essential role in the biogeochemical carbon cycle. In aquatic ecosystems, the alteration of carbon dioxide (CO2 ) fixation by toxic metals such as cadmium - classified as a priority pollutant - could contribute to the unbalance of the carbon cycle. In consequence, the investigation of cadmium impact on carbon assimilation in mixotrophic microorganisms is of high interest. We exposed the mixotrophic microalga Chlamydomonas reinhardtii to cadmium in a growth medium containing both CO2 and labelled 13 C-[1,2] acetate as carbon sources. We showed that the accumulation of cadmium in the pyrenoid, where it was predominantly bound to sulphur ligands, impaired CO2 fixation to the benefit of acetate assimilation. Transmission electron microscopy (TEM)/X-ray energy dispersive spectroscopy (X-EDS) and micro X-ray fluorescence (µXRF)/micro X-ray absorption near-edge structure (µXANES) at Cd LIII- edge indicated the localization and the speciation of cadmium in the cellular structure. In addition, nanoscale secondary ion mass spectrometry (NanoSIMS) analysis of the 13 C/12 C ratio in pyrenoid and starch granules revealed the origin of carbon sources. The fraction of carbon in starch originating from CO2 decreased from 73 to 39% during cadmium stress. For the first time, the complementary use of high-resolution elemental and isotopic imaging techniques allowed relating the impact of cadmium at the subcellular level with carbon assimilation in a mixotrophic microalga.


Assuntos
Cádmio/metabolismo , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Cádmio/toxicidade , Ciclo do Carbono/efeitos dos fármacos , Tamanho Celular , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Clorofila/análise , Ecossistema , Ligantes , Amido/metabolismo , Estresse Fisiológico
2.
Anal Chem ; 88(14): 7130-6, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27291826

RESUMO

An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C(-), CN(-), S(-), P(-)) due to a larger primary ion beam size. In this paper, a new type of an oxygen ion source using a rf plasma is fitted and characterized on a NanoSIMS50L. The performances of this primary ion source in terms of current density and achievable lateral resolution have been characterized and compared to the conventional duoplasmatron and cesium sources. The new rf plasma oxygen source offered a net improvement in terms of primary beam current density compared to the commonly used duoplasmatron source, which resulted in higher ultimate lateral resolutions down to 37 nm and which provided a 5-45 times higher apparent sensitivity for electropositive elements. Other advantages include a better long-term stability and reduced maintenance. This new rf plasma oxygen primary ion source has been applied to the localization of essential macroelements and trace metals at basal levels in two biological models, cells of Chlamydomonas reinhardtii and Arabidopsis thaliana.


Assuntos
Oxigênio/química , Gases em Plasma/química , Espectrometria de Massa de Íon Secundário/métodos , Oligoelementos/análise , Arabidopsis/química , Chlamydomonas reinhardtii/química , Metais Pesados/análise , Ondas de Rádio , Análise de Célula Única
3.
J Biol Chem ; 289(5): 2515-25, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24347170

RESUMO

Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.


Assuntos
Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Ferro/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , FMN Redutase/metabolismo , Compostos Férricos/metabolismo , Radioisótopos de Ferro , Malatos/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo
4.
J Exp Bot ; 66(11): 3201-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873676

RESUMO

Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant.


Assuntos
Arabidopsis/metabolismo , Cádmio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Cádmio/toxicidade , Hibridização Genética , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Especificidade da Espécie , Espectrometria por Raios X , Síncrotrons , Distribuição Tecidual , Xilema/efeitos dos fármacos , Xilema/genética , Xilema/metabolismo , Zinco/metabolismo
5.
J Exp Bot ; 66(11): 3215-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873677

RESUMO

Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration.


Assuntos
Arabidopsis/genética , Cádmio/metabolismo , Parede Celular/efeitos dos fármacos , Variação Genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Biomassa , Cádmio/toxicidade , Parede Celular/metabolismo , Hibridização Genética , Hidroponia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Análise de Componente Principal , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico
6.
Environ Sci Pollut Res Int ; 30(2): 3835-3846, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35953752

RESUMO

Mercury (Hg) is a global pollutant of environmental and health concern; its methylated form, methylmercury (MeHg), is a potent neurotoxin. Sulfur-containing molecules play a role in MeHg production by microorganisms. While sulfides are considered to limit Hg methylation, sulfate and cysteine were shown to favor this process. However, these two forms can be endogenously converted by microorganisms into sulfide. Here, we explore the effect of sulfide (produced by the cell or supplied exogenously) on Hg methylation. For this purpose, Pseudodesulfovibrio hydrargyri BerOc1 was cultivated in non-sulfidogenic conditions with addition of cysteine and sulfide as well as in sulfidogenic conditions. We report that Hg methylation depends on sulfide concentration in the culture and the sulfides produced by cysteine degradation or sulfate reduction could affect the Hg methylation pattern. Hg methylation was independent of hgcA expression. Interestingly, MeHg production was maximal at 0.1-0.5 mM of sulfides. Besides, a strong positive correlation between MeHg in the extracellular medium and the increase of sulfide concentrations was observed, suggesting a facilitated MeHg export with sulfide and/or higher desorption from the cell. We suggest that sulfides (exogenous or endogenous) play a key role in controlling mercury methylation and should be considered when investigating the impact of Hg in natural environments.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Compostos de Metilmercúrio/metabolismo , Cisteína , Mercúrio/metabolismo , Sulfetos/metabolismo , Bactérias/metabolismo , Sulfatos/metabolismo
7.
J Biol Chem ; 286(32): 27863-6, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21719700

RESUMO

Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence. Pea (Pisum sativum) embryo was used as a model in this study because of its large cell size and high iron content. Histochemical staining with ferrocyanide and diaminobenzidine (Perls/diaminobenzidine) strongly labeled a unique structure in each cell, which co-labeled with the DNA fluorescent stain DAPI, thus corresponding to the nucleus. The unexpected presence of iron in the nucleus was confirmed by elemental imaging using micro particle-induced x-ray emission. X-ray fluorescence on cryo-sectioned embryos further established that, quantitatively, the iron concentration found in the nucleus was higher than in the expected iron-rich organelles such as plastids or vacuoles. Moreover, within the nucleus, iron was particularly accumulated in a subcompartment that was identified as the nucleolus as it was shown to transiently disassemble during cell division. Taken together, our data uncover an as yet unidentified although abundant iron pool in the cell, which is located in the nuclei of healthy, actively dividing plant tissues. This result paves the way for the discovery of a novel cellular function for iron related to nucleus/nucleolus-associated processes.


Assuntos
Arabidopsis/metabolismo , Nucléolo Celular/metabolismo , Ferro/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Solanum lycopersicum/metabolismo , Espectrometria por Raios X
8.
J Vis Exp ; (183)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35695534

RESUMO

The study of elements with X-ray absorption spectroscopy (XAS) is of particular interest when studying the role of metals in biological systems. Sample preparation is a key and often complex procedure, particularly for biological samples. Although X-ray speciation techniques are widely used, no detailed protocol has been yet disseminated for users of the technique. Further, chemical state modification is of concern, and cryo-based techniques are recommended to analyze the biological samples in their near-native hydrated state to provide the maximum preservation of chemical integrity of the cells or tissues. Here, we propose a cellular preparation protocol based on cryo-preserved samples. It is demonstrated in a high energy resolution fluorescence detected X-ray absorption spectroscopy study of selenium in cancer cells and a study of iron in phytoplankton. This protocol can be used with other biological samples and other X-ray techniques that can be damaged by irradiation.


Assuntos
Selênio , Metais , Temperatura , Espectroscopia por Absorção de Raios X/métodos
9.
Environ Sci Process Impacts ; 24(10): 1748-1757, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35972271

RESUMO

Tree bark near former mercury (Hg) mines and roasting plants is known to have exceptionally high (up to several mg kg-1) Hg concentrations. This study explores the change of Hg speciation with depth (down to 25-30 mm from the outermost surface) in black pine (Pinus nigra) bark by means of high-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy at the Hg LIII-edge. Principal component analysis and linear combination fitting applied to the HR-XANES spectra suggested that in the outermost layer (∼0-2 mm from the surface), roughly 50% of Hg is in the form of nanoparticulate metacinnabar (nano-ß-HgS). A progressive increase in Hg-organic species (Hg bound to thiol groups) is found in deeper bark layers, while nano-ß-HgS may decrease below the detection limit in the deepest layers. Notably, bark layers did not contain cinnabar (α-HgS), which was found in the nearby soils along with ß-HgS (bulk), nor Hg0, which is the main Hg species in the atmosphere surrounding the sampled trees. These observations suggested that nano-ß-HgS, at least in part, does not originate from mechanically trapped wind-blown particulates from the surrounding soil, but may be the product of biochemical reactions between gaseous elemental Hg and the bark tissue.


Assuntos
Mercúrio , Pinus , Mercúrio/análise , Espectroscopia por Absorção de Raios X , Pinus/química , Casca de Planta/química , Monitoramento Ambiental/métodos , Mineração , Solo/química , Compostos de Sulfidrila
10.
Sci Rep ; 12(1): 16924, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209291

RESUMO

Non-invasive multi-scale and multimodal 3D characterization of heterogeneous or hierarchically structured intact mesoscale samples is of paramount importance in tackling challenging scientific problems. Scanning hard X-ray tomography techniques providing simultaneous complementary 3D information are ideally suited to such studies. However, the implementation of a robust on-site workflow remains the bottleneck for the widespread application of these powerful multimodal tomography methods. In this paper, we describe the development and implementation of such a robust, holistic workflow, including semi-automatic data reconstruction. Due to its flexibility, our approach is especially well suited for on-the-fly tuning of the experiments to study features of interest progressively at different length scales. To demonstrate the performance of the method, we studied, across multiple length scales, the elemental abundances and morphology of two complex biological systems, Arabidopsis plant seeds and mouse renal papilla samples. The proposed approach opens the way towards routine multimodal 3D characterization of intact samples by providing relevant information from pertinent sample regions in a wide range of scientific fields such as biology, geology, and material sciences.


Assuntos
Imageamento Tridimensional , Tomografia Computadorizada por Raios X , Animais , Imageamento Tridimensional/métodos , Camundongos , Cintilografia , Tomografia Computadorizada por Raios X/métodos , Fluxo de Trabalho
11.
Environ Sci Pollut Res Int ; 29(20): 29314-29331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34661843

RESUMO

The ability of tobacco (Nicotiana tabacum L. cv. Badischer Geudertheimer) for phytomanaging and remediating soil ecological functions at a contaminated site was assessed with a potted soil series made by fading an uncontaminated sandy soil with a contaminated sandy soil from the Borifer brownfield site, Bordeaux, SW France, at the 0%, 25%, 50%, 75%, and 100% addition rates. Activities of sandblasting and painting with metal-based paints occurred for decades at this urban brownfield, polluting the soil with metal(loid)s and organic contaminants, e.g., polycyclic aromatic hydrocarbons, in addition to past backfilling. Total topsoil metal(loid)s (e.g., 54,700 mg Zn and 5060 mg Cu kg-1) exceeded by seven- to tenfold the background values for French sandy soils, but the soil pH was 7.9, and overall, the 1M NH4NO3 extractable soil fractions of metals were relatively low. Leaf area, water content of shoots, and total chlorophyll (Chl) progressively decreased with the soil contamination, but the Chl fluorescence remained constant near its optimum value. Foliar Cu and Zn concentrations varied from 17.8 ± 4.2 (0%) to 27 ± 5 mg Cu kg-1 (100%) and from 60 ± 15 (0%) to 454 ± 53 mg Zn kg-1 (100%), respectively. Foliar Cd concentration peaked up to 1.74 ± 0.09 mg Cd kg-1, and its bioconcentration factor had the highest value (0.2) among those of the metal(loid)s. Few nutrient concentrations in the aboveground plant parts decreased with the soil contamination, e.g., foliar P concentration from 5972 ± 1026 (0%) to 2861 ± 334 mg kg-1 (100%). Vulnerability to drought-induced embolism (P50) did not differ for the tobacco stems across the soil series, whereas their hydraulic efficiency (Ks) declined significantly with increasing soil contamination. Overall, this tobacco cultivar grew relatively well even in the Borifer soil (100%), keeping its photosynthetic system healthy under stress, and contaminant exposure did not increase the vulnerability of the vascular system to drought. This tobacco had a relevant potential to annually phytoextract a part of the bioavailable soil Zn and Cd, i.e., shoot removals representing here 8.8% for Zn and 43.3% for Cd of their 1M NH4NO3 extractable amount in the potted Borifer soil.


Assuntos
Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Nicotiana
12.
Sci Total Environ ; 806(Pt 3): 150690, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600980

RESUMO

The last few years have seen the proliferation of anaerobic digestion plants to produce biomethane. Oxygen (O2) traces added to biogas during the desulfurization process are co-injected in the gas network and can be stored in Underground Gas Storage (UGS). However, there are no data available for the undesirable effects of O2 on these anoxic environments, especially on deep aquifers. In addition to mineral alteration, O2 can have an impact on the anaerobic autochthonous microbial life. In our study, the storage conditions of an UGS aquifer were reproduced in a high-pressure reactor and bio-geo-chemical interactions between the aqueous, gas and solid phases were studied. Sulfate was depleted from the liquid phase for three consecutive times during the first 130 days of incubation reproducing the storage conditions (36 °C, 60 bar, methane with 1% CO2). Sulfate-reducers, such as Desulfovibrionaceae, were identified from the high-pressure system. Simulations with PHREEQC were used to determine the thermodynamic equilibrium to confirm any gas consumption. CO2 quantities decreased in the gas phase, suggesting its use as carbon source by microbial life. Benzene and toluene, hydrocarbons found in traces and known to be biodegradable in storages, were monitored and a decrease of toluene was revealed and associated to the Peptococcaceae family. Afterwards, O2 was added as 1% of the gas phase, corresponding to the maximum quantity found in biomethane after desulfurization process. Re-oxidation of sulfide to sulfate was observed along with the end of sulfate reducing activity and toluene biodegradation and the disappearance of most of the community. H2 surprisingly appeared and accumulated as soon as hydrogenotrophic sulfate-reducers decreased. H2 would be produced via the necromass fermentation accomplished by microorganisms able to resist the oxic conditions of 4.42·10-4 mol.Kgw-1 of O2. The solid phase composed essentially of quartz, presented no remarkable changes.


Assuntos
Água Subterrânea , Oxigênio , Geologia , Metano , Sulfatos
13.
Environ Sci Technol ; 45(24): 10492-500, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22050765

RESUMO

Hexavalent chromium (Cr(VI)) occurrence in soils is generally determined using an extraction step to transfer it to the liquid phase where it is more easily detected and quantified. In this work, the performance of the most common extraction procedure (EPA Method 3060A) using NaOH-Na(2)CO(3) solutions is evaluated using X-ray absorption near edge structure spectroscopy (XANES), which enables the quantification of Cr(VI) directly in the solid state. Results obtained with both methods were compared for three solid samples with different matrices: a soil containing chromite ore processing residue (COPR), a loamy soil, and a paint sludge. Results showed that Cr(VI) contents determined by the two methods differ significantly, and that the EPA Method 3060A procedure underestimated the Cr(VI) content in all studied samples. The underestimation is particularly pronounced for COPR. Low extraction yield for EPA Method 3060A was found to be the main reason. The Cr(VI) present in COPR was found to be more concentrated in magnetic phases. This work provides new XANES analyses of SRM 2701 and its extraction residues for the purpose of benchmarking EPA 3060A performance.


Assuntos
Cromo/análise , Poluentes do Solo/análise , Solo/química , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Cromo/química , Poluentes do Solo/química , Estados Unidos , United States Environmental Protection Agency , Espectroscopia por Absorção de Raios X
14.
Front Microbiol ; 11: 584715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154741

RESUMO

Microorganisms are key players in the transformation of mercury into neurotoxic methylmercury (MeHg). Nevertheless, this mechanism and the opposite MeHg demethylation remain poorly understood. Here, we explored the impact of inorganic mercury (IHg) and MeHg concentrations from 0.05 to 50 µM on the production and degradation of MeHg in two sulfate-reducing bacteria, Pseudodesulfovibrio hydrargyri BerOc1 able to methylate and demethylate mercury and Desulfovibrio desulfuricans G200 only able to demethylate MeHg. MeHg produced by BerOc1 increased with increasing IHg concentration with a maximum attained for 5 µM, and suggested a saturation of the process. MeHg was mainly found in the supernatant suggesting its export from the cell. Hg L3-edge High- Energy-Resolution-Fluorescence-Detected-X-ray-Absorption-Near-Edge-Structure spectroscopy (HERFD-XANES) identified MeHg produced by BerOc1 as MeHg-cysteine2 form. A dominant tetracoordinated ßHgS form was detected for BerOc1 exposed to the lowest IHg concentrations where methylation was detected. In contrast, at the highest exposure (50 µM) where Hg methylation was abolished, Hg species drastically changed suggesting a role of Hg speciation in the production of MeHg. The tetracoordinated ßHgS was likely present as nano-particles as suggested by transmission electron microscopy combined to X-ray energy dispersive spectroscopy (TEM-X-EDS) and nano-X ray fluorescence (nano-XRF). When exposed to MeHg, the production of IHg, on the contrary, increased with the increase of MeHg exposure until 50 µM for both BerOc1 and G200 strains, suggesting that demethylation did not require intact biological activity. The formed IHg species were identified as various tetracoordinated Hg-S forms. These results highlight the important role of thiol ligands and Hg coordination in Hg methylation and demethylation processes.

15.
Food Res Int ; 127: 108743, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882114

RESUMO

A large fraction of the South-American cacao production is affected by new cadmium (Cd) regulations in cacao. This work was set up to characterize the distribution and speciation of Cd within the cacao fruit and to monitor potential Cd redistribution during cacao fermentation. In cacao fruits from four locations, Cd concentrations decreased with testa > nib ~ placenta ~ pod husk > mucilage. The distribution of Cd within cacao beans was successfully visualized using laser ablation inductively coupled plasma spectrometry (LA-ICP-MS) and confirmed higher Cd concentrations in the testa than in the nib. Speciation analysis by X-ray absorption spectroscopy (XANES) of unfermented cacao beans revealed that Cd was bound to O/N-ligands in both nib and testa. Fermentation induced an outward Cd migration from the nibs to the testa, i.e. against the total concentration gradient. This migration occurred only if the fermentation was sufficiently extensive to decrease the pH in the nib to <5.0, likely as a result of increased Cd mobility due to organic acid penetration into the nibs. The change in dry weight based nib Cd concentrations during fermentation was, on average, a factor 1.3 decrease. We propose that nib Cd can be reduced if the nib pH is sufficiently acidified during fermentation. However, a balance must be found between flavor development and Cd removal since extreme acidity is detrimental for cacao flavor.


Assuntos
Cacau/química , Cádmio/química , Fermentação , Sementes/química , Concentração de Íons de Hidrogênio , Temperatura
16.
Environ Pollut ; 260: 113987, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31962265

RESUMO

Understanding how essential and toxic elements are distributed in cereal grains is a key to improving the nutritional quality of cereal-based products. The main objective of this work was to characterize the distribution of Cd and of nutrients (notably Cu, Fe, Mn, P, S and Zn) in the durum wheat grain. Laser ablation inductively coupled mass spectrometry and synchrotron micro X-ray fluorescence were used for micro-scale mapping of Cd and nutrients. A dissection approach was used to quantitatively assess the distribution of Cd and nutrients among grain tissues. Micro X-ray absorption near-edge spectroscopy was used to identify the Cd chemical environment in the crease. Cadmium distribution was characterized by strong accumulation in the crease and by non-negligible dissemination in the endosperm. Inside the crease, Cd accumulated most in the pigment strand where it was mainly associated with sulfur ligands. High-resolution maps highlighted very specific accumulation areas of some nutrients in the germ, for instance Mo in the root cortex primordia and Cu in the scutellum. Cadmium loading into the grain appears to be highly restricted. In the grain, Cd co-localized with several nutrients, notably Mn and Zn, which challenges the idea of selectively removing Cd-enriched fractions by dedicated milling process.


Assuntos
Cádmio/análise , Poluentes do Solo/análise , Triticum/química , Endosperma , Monitoramento Ambiental , Espectrofotometria Atômica , Síncrotrons
17.
Plant Physiol Biochem ; 151: 144-156, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32220787

RESUMO

Paspalum urvillei and Setaria parviflora are two plant species naturally adapted to iron-rich environments such as around iron mines wastes. The aim of our work was to characterize how these two species cope with these extreme conditions by comparing them with related model species, Oryza sativa and Setaria viridis, that appeared to be much less tolerant to Fe excess. Both Paspalum urvillei and Setaria parviflora were able to limit the amount of Fe accumulated within roots and shoots, compared to the less tolerant species. Perls/DAB staining of Fe in root cross sections indicated that Paspalum urvillei and Setaria parviflora responded through the build-up of the iron plaque (IP), suggesting a role of this structure in the limitation of Fe uptake. Synchrotron µXRF analyses showed the presence of phosphorus, calcium, silicon and sulfur on IP of Paspalum urvillei roots and µXANES analyses identified Fe oxyhydroxide (ferrihydrite) as the main Fe form. Once within roots, high concentrations of Fe were localized in the cell walls and vacuoles of Paspalum urvillei, Setaria parviflora and O. sativa whereas Setaria viridis accumulated Fe in ferritins. The Fe forms translocated to the shoots of Setaria parviflora were identified as tri-iron complexes with citrate and malate. In leaves, all species accumulated Fe in the vacuoles of bundle sheath cells and as ferritin complexes in plastids. Taken together, our results strongly suggest that Paspalum urvillei and Setaria parviflora set up mechanisms of Fe exclusion in roots and shoots to limit the toxicity induced by Fe excess.


Assuntos
Ferro/metabolismo , Paspalum/fisiologia , Setaria (Planta)/fisiologia , Oryza/fisiologia , Raízes de Plantas/metabolismo , Solo/química
18.
New Phytol ; 184(3): 581-595, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19761446

RESUMO

The purpose of this study was to investigate the relationship between the chemical form and localization of zinc (Zn) in plant leaves and their Zn accumulation capacity. An interspecific cross between Arabidopsis halleri sp. halleri and Arabidopsis lyrata sp. petrea segregating for Zn accumulation was used. Zinc (Zn) speciation and Zn distribution in the leaves of the parent plants and of selected F(1) and F(2) progenies were investigated by spectroscopic and microscopic techniques and chemical analyses. A correlation was observed between the proportion of Zn being in octahedral coordination complexed to organic acids and free in solution (Zn-OAs + Zn(aq)) and Zn content in the leaves. This pool varied between 40% and 80% of total leaf Zn depending on the plant studied. Elemental mapping of the leaves revealed different Zn partitioning between the veins and the leaf tissue. The vein : tissue fluorescence ratio was negatively correlated with Zn accumulation. The higher proportion of Zn-OAs + Zn(aq) and the depletion of the veins in the stronger accumulators are attributed to a higher xylem unloading and vacuolar sequestration in the leaf cells. Elemental distributions in the trichomes were also investigated, and results support the role of carboxyl and/or hydroxyl groups as major Zn ligands in these cells.


Assuntos
Arabidopsis/metabolismo , Zinco/metabolismo , Ácidos/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Hibridização Genética , Microscopia Eletrônica de Varredura , Fenótipo , Folhas de Planta/metabolismo , Especificidade da Espécie , Espectrometria por Raios X , Distribuição Tecidual , Zinco/química
20.
J Trace Elem Med Biol ; 37: 62-68, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27288221

RESUMO

Chemical bioimaging offers an important contribution to the investigation of biochemical functions, biosorption and bioaccumulation processes of trace elements via their localization at the cellular and even at the subcellular level. This paper describes the combined use of high contrast transmission electron microscopy (HC-TEM), energy dispersive X-ray spectroscopy (X-EDS), and nano secondary ion mass spectrometry (NanoSIMS) applied to a model organism, the unicellular green algae Chlamydomonas reinhardtii. HC-TEM providing a lateral resolution of 1nm was used for imaging the ultrastructure of algae cells which have diameters of 5-10µm. TEM coupled to X-EDS (TEM/X-EDS) combined textural (morphology and size) analysis with detection of Ca, P, K, Mg, Fe, and Zn in selected subcellular granules using an X-EDS probe size of approx. 1µm. However, instrumental sensitivity was at the limit for trace element detection. NanoSIMS allowed chemical imaging of macro and trace elements with subcellular resolution (element mapping). Ca, Mg, and P as well as the trace elements Fe, Cu, and Zn present at basal levels were detected in pyrenoids, contractile vacuoles, and granules. Some metals were even localized in small vesicles of about 200nm size. Sensitive subcellular localization of trace metals was possible by the application of a recently developed RF plasma oxygen primary ion source on NanoSIMS which has shown good improvements in terms of lateral resolution (below 50nm), sensitivity, and stability. Furthermore correlative single cell imaging was developed combining the advantages of TEM and NanoSIMS. An advanced sample preparation protocol provided adjacent ultramicrotome sections for parallel TEM and NanoSIMS analyses of the same cell. Thus, the C. reinhardtii cellular ultrastructure could be directly related to the spatial distribution of metals in different cell organelles such as vacuoles and chloroplast.


Assuntos
Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Microscopia Eletrônica de Transmissão , Espectrometria de Massa de Íon Secundário , Espectrometria por Raios X , Frações Subcelulares/metabolismo , Oligoelementos/análise , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/ultraestrutura , Frações Subcelulares/química , Frações Subcelulares/ultraestrutura , Oligoelementos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa