Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Genes Dev ; 31(7): 660-673, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428261

RESUMO

The transcription factor early B-cell factor 2 (EBF2) is an essential mediator of brown adipocyte commitment and terminal differentiation. However, the mechanisms by which EBF2 regulates chromatin to activate brown fat-specific genes in adipocytes were unknown. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by deep sequencing) analyses in brown adipose tissue showed that EBF2 binds and regulates the activity of lineage-specific enhancers. Mechanistically, EBF2 physically interacts with the chromatin remodeler BRG1 and the BAF chromatin remodeling complex in brown adipocytes. We identified the histone reader protein DPF3 as a brown fat-selective component of the BAF complex that was required for brown fat gene programming and mitochondrial function. Loss of DPF3 in brown adipocytes reduced chromatin accessibility at EBF2-bound enhancers and led to a decrease in basal and catecholamine-stimulated expression of brown fat-selective genes. Notably, Dpf3 is a direct transcriptional target of EBF2 in brown adipocytes, thereby establishing a regulatory module through which EBF2 activates and also recruits DPF3-anchored BAF complexes to chromatin. Together, these results reveal a novel mechanism by which EBF2 cooperates with a tissue-specific chromatin remodeling complex to activate brown fat identity genes.


Assuntos
Adipogenia/genética , Tecido Adiposo Marrom/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Fatores de Transcrição/genética , Tecido Adiposo Marrom/metabolismo , Animais , Linhagem da Célula/genética , Células Cultivadas , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcrição Gênica
2.
Genes Dev ; 29(3): 298-307, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644604

RESUMO

PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Animais , Cromatina/química , Cromatina/genética , Elementos Facilitadores Genéticos , Camundongos
3.
Am J Physiol Endocrinol Metab ; 320(6): E1148-E1157, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33870712

RESUMO

The cytokine interleukin 4 (IL-4) can increase beige adipogenesis in adult rodents. However, neonatal animals use a distinct adipocyte precursor compartment for adipogenesis as compared with adults. In this study, we address whether IL-4 can induce persistent effects on adipose tissue when administered subcutaneously in the interscapular region during the neonatal period in Sprague-Dawley rats. We injected IL-4 into neonatal male rats during postnatal days 1-6, followed by analysis of adipose tissue and adipocyte precursors at 2 wk and 10 wk of age. Adipocyte precursors were cultured and subjected to differentiation in vitro. We found that a short and transient IL-4 exposure in neonates upregulated uncoupling protein 1 (Ucp1) mRNA expression and decreased fat cell size in subcutaneous white adipose tissue (WAT). Adipocyte precursors from mature rats that had been treated with IL-4 as neonates displayed a decrease in adiponectin (Adipoq) but no change in Ucp1 expression, as compared with controls. Thus, neonatal IL-4 induces acute beige adipogenesis and decreases adipogenic differentiation capacity long term. Overall, these findings indicate that the neonatal period is critical for adipocyte development and may influence the later onset of obesity.NEW & NOTEWORTHY We used neonatal injections in rat to show that IL-4 decreases adipogenesis and increases browning of white fat. In adulthood, adipocyte precursors show persistently decreased adipogenesis but not increased browning. These studies in the neonate are the first, to our knowledge, to show that IL-4 can have long-lasting effects.


Assuntos
Adipogenia/efeitos dos fármacos , Envelhecimento/metabolismo , Interleucina-4/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Envelhecimento/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
4.
EMBO J ; 36(11): 1528-1542, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408438

RESUMO

Brown adipose has the potential to counteract obesity, and thus, identifying signaling pathways that regulate the activity of this tissue is of great clinical interest. PRDM16 is a transcription factor that activates brown fat-specific genes while repressing white fat and muscle-specific genes in adipocytes. Whether PRDM16 also controls other gene programs to regulate adipocyte function was unclear. Here, we identify a novel role for PRDM16 in suppressing type I interferon (IFN)-stimulated genes (ISGs), including Stat1, in adipocytes in vitro and in vivo Ectopic activation of type I IFN signaling in brown adipocytes induces mitochondrial dysfunction and reduces uncoupling protein 1 (UCP1) expression. Prdm16-deficient adipose displays an exaggerated response to type I IFN, including higher STAT1 levels and reduced mitochondrial gene expression. Mechanistically, PRDM16 represses ISGs through binding to promoter regions of these genes and blocking the activating function of IFN regulatory factor 1 (IRF1). Together, these data indicate that PRDM16 diminishes responsiveness to type I IFN in adipose cells to promote thermogenic and mitochondrial function.


Assuntos
Adipócitos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/antagonistas & inibidores , Interferon Tipo I/metabolismo , Mitocôndrias/metabolismo , Termogênese , Fatores de Transcrição/metabolismo , Animais , Camundongos , Fator de Transcrição STAT1/antagonistas & inibidores , Proteína Desacopladora 1/metabolismo
5.
Hum Mol Genet ; 23(18): 4995-5008, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24833719

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor neuron disease remains unclear. Leptin is an adipocyte-derived hormone that regulates whole-animal energy expenditure. Here, we report that placing mutant superoxide dismutase 1 (SOD1) mice in a leptin-deficient background improves energy homeostasis and slows disease progression. Leptin-deficient mutant SOD1 mice possess increased bodyweight and fat mass, as well as decreased energy expenditure. These observations coincide with enhanced survival, improved strength and decreased motor neuron loss. These results suggest that altering whole-body energy metabolism in mutant SOD1 mice can mitigate disease progression. We propose that manipulations that increase fat mass and reduce energy expenditure will be beneficial in the setting of motor neuron disease.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Leptina/deficiência , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Peso Corporal , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Masculino , Camundongos , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo , Superóxido Dismutase-1
6.
Dev Cell ; 58(21): 2195-2205.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37647897

RESUMO

Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. Here, we performed single-cell gene expression analyses of mesenchymal cells during mouse embryogenesis with a focus on BAT development. We identified cell populations associated with the development of BAT, including Dpp4+ cells that emerge at the onset of adipogenic commitment. Immunostaining and lineage-tracing studies show that Dpp4+ cells constitute the BAT fascia and contribute minorly as adipocyte progenitors. Additionally, we identified the transcription factor GATA6 as a marker of brown adipogenic progenitor cells. Deletion of Gata6 in the brown fat lineage resulted in a striking loss of BAT. Together, these results identify progenitor and transitional cells in the brown adipose lineage and define a crucial role for GATA6 in BAT development.


Assuntos
Adipócitos Marrons , Dipeptidil Peptidase 4 , Animais , Camundongos , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Dipeptidil Peptidase 4/metabolismo , Obesidade/metabolismo , Termogênese/genética
7.
Gastroenterology ; 141(4): 1463-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21704586

RESUMO

BACKGROUND & AIMS: Progression of diseases of the exocrine pancreas, which include pancreatitis and cancer, is associated with increased levels of cell stress. Pancreatic acinar cells are involved in development of these diseases and, because of their high level of protein output, they require an efficient, unfolded protein response (UPR) that mediates recovery from endoplasmic reticulum (ER) stress following the accumulation of misfolded proteins. METHODS: To study recovery from ER stress in the exocrine organ, we generated mice with conditional disruption of Xbp1 (a principal component of the UPR) in most adult pancreatic acinar cells (Xbp1fl/fl). We monitored the effects of constitutive ER stress in the exocrine pancreas of these mice. RESULTS: Xbp1-null acinar cells underwent extensive apoptosis, followed by a rapid phase of recovery in the pancreas that included expansion of the centroacinar cell compartment, formation of tubular complexes that contained Hes1- and Sox9-expressing cells, and regeneration of acinar cells that expressed Mist1 from the residual, surviving Xbp1+ cell population. CONCLUSIONS: XBP1 is required for homeostasis of acinar cells in mice; ER stress induces a regenerative response in the pancreas that involves acinar and centroacinar cells, providing the needed capacity for organ recovery from exocrine pancreas disease.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Retículo Endoplasmático/metabolismo , Pâncreas Exócrino/metabolismo , Pancreatopatias/metabolismo , Regeneração , Fatores de Transcrição/deficiência , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/patologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pâncreas Exócrino/patologia , Pancreatopatias/genética , Pancreatopatias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição SOX9/metabolismo , Estresse Fisiológico , Fatores de Tempo , Fatores de Transcrição HES-1 , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box
8.
Cell Rep ; 35(7): 109128, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010646

RESUMO

Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Termogênese/genética , Animais , Camundongos
9.
J Cell Biol ; 171(3): 471-82, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16275751

RESUMO

MyoD and Myf5 are basic helix-loop-helix transcription factors that play key but redundant roles in specifying myogenic progenitors during embryogenesis. However, there are functional differences between the two transcription factors that impact myoblast proliferation and differentiation. Target gene activation could be one such difference. We have used microarray and polymerase chain reaction approaches to measure the induction of muscle gene expression by MyoD and Myf5 in an in vitro model. In proliferating cells, MyoD and Myf5 function very similarly to activate the expression of likely growth phase target genes such as L-myc, m-cadherin, Mcpt8, Runx1, Spp1, Six1, IGFBP5, and Chrnbeta1. MyoD, however, is strikingly more effective than Myf5 at inducing differentiation-phase target genes. This distinction between MyoD and Myf5 results from a novel and unanticipated cooperation between the MyoD NH2- and COOH-terminal regions. Together, these results support the notion that Myf5 functions toward myoblast proliferation, whereas MyoD prepares myoblasts for efficient differentiation.


Assuntos
Diferenciação Celular , Proteína MyoD/fisiologia , Mioblastos/metabolismo , Fator Regulador Miogênico 5/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Mioblastos/citologia , Fator Regulador Miogênico 5/genética , Análise de Sequência com Séries de Oligonucleotídeos , Estrutura Terciária de Proteína , Ativação Transcricional
10.
Cell Rep ; 30(9): 2869-2878.e4, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130892

RESUMO

Brown adipose tissue (BAT) activity protects animals against hypothermia and represents a potential therapeutic target to combat obesity. The transcription factor early B cell factor-2 (EBF2) promotes brown adipocyte differentiation, but its roles in maintaining brown adipocyte fate and in stimulating BAT recruitment during cold exposure were unknown. We find that the deletion of Ebf2 in adipocytes of mice ablates BAT character and function, resulting in cold intolerance. Unexpectedly, prolonged exposure to cold restores the thermogenic profile and function of Ebf2 mutant BAT. Enhancer profiling and genetic assays identified EBF1 as a candidate regulator of the cold response in BAT. Adipocyte-specific deletion of both Ebf1 and Ebf2 abolishes BAT recruitment during chronic cold exposure. Mechanistically, EBF1 and EBF2 promote thermogenic gene transcription through increasing the expression and activity of ERRα and PGC1α. Together, these studies demonstrate that EBF proteins specify the developmental fate and control the adaptive cold response of brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Temperatura Baixa , Dieta Hiperlipídica , Regulação da Expressão Gênica , Camundongos , Células NIH 3T3 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Estrogênio , Transcrição Gênica , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
11.
ACS Nano ; 13(7): 7627-7643, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31194909

RESUMO

The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for studying a wide range of physiological processes. Traditional in vitro models of the vasculature, however, largely fail to offer such capabilities. Here we combine microfluidic three-dimensional (3D) cell culture with the principle of vasculogenic self-assembly to engineer perfusable 3D microvascular beds in vitro. Our system is created in a micropatterned hydrogel construct housed in an elastomeric microdevice that enables coculture of primary human vascular endothelial cells and fibroblasts to achieve de novo formation, anastomosis, and controlled perfusion of 3D vascular networks. An open-top chamber design adopted in this hybrid platform also makes it possible to integrate the microengineered 3D vasculature with other cell types to recapitulate organ-specific cellular heterogeneity and structural organization of vascularized human tissues. Using these capabilities, we developed stem cell-derived microphysiological models of vascularized human adipose tissue and the blood-retinal barrier. Our approach was also leveraged to construct a 3D organotypic model of vascularized human lung adenocarcinoma as a high-content drug screening platform to simulate intravascular delivery, tumor-killing effects, and vascular toxicity of a clinical chemotherapeutic agent. Furthermore, we demonstrated the potential of our platform for applications in nanomedicine by creating microengineered models of vascular inflammation to evaluate a nanoengineered drug delivery system based on active targeting liposomal nanocarriers. These results represent a significant improvement in our ability to model the complexity of native human tissues and may provide a basis for developing predictive preclinical models for biopharmaceutical applications.


Assuntos
Adenocarcinoma de Pulmão/patologia , Técnicas de Cultura de Células , Engenharia Celular , Células Endoteliais/citologia , Fibroblastos/citologia , Técnicas Analíticas Microfluídicas , Adenocarcinoma de Pulmão/irrigação sanguínea , Humanos , Hidrogéis/química , Microcirculação
12.
Cell Metab ; 30(1): 174-189.e5, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31155495

RESUMO

The precursor cells for metabolically beneficial beige adipocytes can alternatively become fibrogenic and contribute to adipose fibrosis. We found that cold exposure or ß3-adrenergic agonist treatment of mice decreased the fibrogenic profile of precursor cells and stimulated beige adipocyte differentiation. This fibrogenic-to-adipogenic transition was impaired in aged animals, correlating with reduced adipocyte expression of the transcription factor PRDM16. Genetic loss of Prdm16 mimicked the effect of aging in promoting fibrosis, whereas increasing PRDM16 in aged mice decreased fibrosis and restored beige adipose development. PRDM16-expressing adipose cells secreted the metabolite ß-hydroxybutyrate (BHB), which blocked precursor fibrogenesis and facilitated beige adipogenesis. BHB catabolism in precursor cells, mediated by BDH1, was required for beige fat differentiation in vivo. Finally, dietary BHB supplementation in aged animals reduced adipose fibrosis and promoted beige fat formation. Together, our results demonstrate that adipocytes secrete a metabolite signal that controls beige fat remodeling.


Assuntos
Adipócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Animais , Western Blotting , Proteínas de Ligação a DNA/genética , Citometria de Fluxo , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Camundongos , Fatores de Transcrição/genética
13.
PLoS Biol ; 2(5): E130, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15138500

RESUMO

CD45(+):Sca1(+) adult stem cells isolated from uninjured muscle do not display any myogenic potential, whereas those isolated from regenerating muscle give rise to myoblasts expressing the paired-box transcription factor Pax7 and the bHLH factors Myf5 and MyoD. By contrast, CD45(+):Sca1(+) isolated from injured Pax7( -/-) muscle were incapable of forming myoblasts. Infection of CD45(+):Sca1(+) cells from uninjured muscle with retrovirus expressing Pax7 efficiently activated the myogenic program. The resulting myoblasts expressed Myf5 and MyoD and differentiated into myotubes that expressed myogenin and myosin heavy chain. Infection of CD45(-):Sca1(-) cells from Pax7( -/-) muscle similarly gave rise to myoblasts. Notably, infection of Pax7-deficient muscle with adenoviral Pax7 resulted in the de novo formation of regenerated myofibers. Taken together, these results indicate that Pax7 is necessary and sufficient to induce the myogenic specification of CD45(+) stem cells resident in adult skeletal muscle. Moreover, these experiments suggest that viral transduction of Pax7 is a potential therapeutic approach for the treatment of neuromuscular degenerative diseases.


Assuntos
Antígenos Comuns de Leucócito/fisiologia , Músculos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Fator de Transcrição PAX7/fisiologia , Adenoviridae/genética , Animais , Ataxina-1 , Ataxinas , Northern Blotting , Western Blotting , Diferenciação Celular , Linhagem Celular , Separação Celular , Transplante de Células , Células Cultivadas , Regulação da Expressão Gênica , Genes Reporter , Imuno-Histoquímica , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Nus , Microscopia de Fluorescência , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Fator Regulador Miogênico 5/biossíntese , Cadeias Pesadas de Miosina/metabolismo , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/genética , Fator de Transcrição PAX7/metabolismo , Regeneração , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
Mol Metab ; 5(1): 57-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26844207

RESUMO

OBJECTIVE: The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity. METHODS: In addition to primary cell culture studies, we used ​Ebf2 knockout mice and mice overexpressing EBF2 in the adipose tissue to study the necessity and sufficiency of EBF2 to induce beiging in vivo. RESULTS: We found that EBF2 is required for beige adipocyte development in mice. Subcutaneous WAT or primary adipose cell cultures from Ebf2 knockout mice did not induce Uncoupling Protein 1 (UCP1) or a thermogenic program following adrenergic stimulation. Conversely, over-expression of EBF2 in adipocyte cultures induced UCP1 expression and a brown-like/beige fat-selective differentiation program. Transgenic expression of Ebf2 in adipose tissues robustly stimulated beige adipocyte development in the WAT of mice, even while housed at thermoneutrality. EBF2 overexpression was sufficient to increase mitochondrial function in WAT and protect animals against high fat diet-induced weight gain. CONCLUSIONS: Taken together, our results demonstrate that EBF2 controls the beiging process and suggest that activation of EBF2 in WAT could be used to reduce obesity.

15.
Cell Metab ; 23(6): 1167-1184, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27238639

RESUMO

The transcriptional regulators Ebf2 and Prdm16 establish and maintain the brown and/or beige fat cell identity. However, the mechanisms operating in white adipocytes to suppress the thermogenic gene program and maintain an energy-storing phenotype are less understood. Here, we report that the transcriptional regulator Zfp423 is critical for maintaining white adipocyte identity through suppression of the thermogenic gene program. Zfp423 expression is enriched in white versus brown adipocytes and suppressed upon cold exposure. Doxycycline-inducible inactivation of Zfp423 in mature adipocytes, combined with ß-adrenergic stimulation, triggers a conversion of differentiated adiponectin-expressing inguinal and gonadal adipocytes into beige-like adipocytes; this reprogramming event is sufficient to prevent and reverse diet-induced obesity and insulin resistance. Mechanistically, Zfp423 acts in adipocytes to inhibit the activity of Ebf2 and suppress Prdm16 activation. These data identify Zfp423 as a molecular brake on adipocyte thermogenesis and suggest a therapeutic strategy to unlock the thermogenic potential of white adipocytes in obesity.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Termogênese/genética , Fatores de Transcrição/metabolismo , Adiponectina/metabolismo , Envelhecimento/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Temperatura Baixa , Dieta Hiperlipídica , Intolerância à Glucose , Teste de Tolerância a Glucose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia , Ligação Proteica , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Transcrição Gênica , Aumento de Peso
16.
Temperature (Austin) ; 2(1): 65-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27227007

RESUMO

The PR-domain containing 16 (Prdm16) protein is a powerful inducer of the thermogenic phenotype in fat cells. In both developmental (brown) and induced (beige) thermogenic adipose tissue, Prdm16 has a critical role in maintaining proper tissue structure and function. It has roles throughout the course of differentiation, beginning with lineage determination activity in precursor cells, and continuing with coactivator functions that enable and maintain thermogenic gene expression. These abilities are primarily mediated by interactions with other adipogenic factors, suggesting that Prdm16 acts to coordinate the overall brown adipose phenotype. Mouse models have confirmed that thermogenic adipose depends upon Prdm16, and that this type of fat tissue provides substantial metabolic protection against the harmful effects of a high fat/high energy diet. Activation of Prdm16, therefore, holds promise for stimulating thermogenesis in fat cells to reduce human obesity and its complications.

17.
Cell Metab ; 19(4): 593-604, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24703692

RESUMO

Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. However, Prdm16 was required in young mice to suppress the expression of white-fat-selective genes in BAT through recruitment of the histone methyltransferase Ehmt1. Additionally, Prdm16 deficiency caused a severe adult-onset decline in the thermogenic character of interscapular BAT. This resulted in BAT dysfunction and cold sensitivity but did not predispose the animals to obesity. Interestingly, the loss of brown fat identity due to ablation of Prdm16 was accelerated by concurrent deletion of the closely related Prdm3 gene. Together, these results show that Prdm16 and Prdm3 control postnatal BAT identity and function.


Assuntos
Adipócitos Marrons/fisiologia , Envelhecimento/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos Marrons/metabolismo , Análise de Variância , Animais , Western Blotting , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Citometria de Fluxo , Técnicas Histológicas , Camundongos , Camundongos Knockout , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
18.
Cell Metab ; 17(4): 562-74, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23499423

RESUMO

The master transcription factor Pparγ regulates the general differentiation program of both brown and white adipocytes. However, it has been unclear whether Pparγ also controls fat lineage-specific characteristics. Here, we show that early B cell factor-2 (Ebf2) regulates Pparγ binding activity to determine brown versus white adipocyte identity. The Ebf DNA-binding motif was highly enriched within brown adipose-specific Pparγ binding sites that we identified by genome-wide ChIP-Seq. Of the Ebf isoforms, Ebf2 was selectively expressed in brown relative to white adipocytes and was bound at brown adipose-specific Pparγ target genes. When expressed in myoblasts or white preadipose cells, Ebf2 recruited Pparγ to its brown-selective binding sites and reprogrammed cells to a brown fat fate. Brown adipose cells and tissue from Ebf2-deficient mice displayed a loss of brown-specific characteristics and thermogenic capacity. Together, these results identify Ebf2 as a key transcriptional regulator of brown fat cell fate and function.


Assuntos
Adipócitos Marrons/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Adipócitos Marrons/citologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Knockout , PPAR gama/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Skelet Muscle ; 2(1): 6, 2012 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-22541644

RESUMO

BACKGROUND: Mice lacking MyoD exhibit delayed skeletal muscle regeneration and markedly enhanced numbers of satellite cells. Myoblasts isolated from MyoD-/- myoblasts proliferate more rapidly than wild type myoblasts, display a dramatic delay in differentiation, and continue to incorporate BrdU after serum withdrawal. METHODS: Primary myoblasts isolated from wild type and MyoD-/- mutant mice were examined by microarray analysis and further characterized by cell and molecular experiments in cell culture. RESULTS: We found that NF-κB, a key regulator of cell-cycle withdrawal and differentiation, aberrantly maintains nuclear localization and transcriptional activity in MyoD-/- myoblasts. As a result, expression of cyclin D is maintained during serum withdrawal, inhibiting expression of muscle-specific genes and progression through the differentiation program. Sustained nuclear localization of cyclin E, and a concomitant increase in cdk2 activity maintains S-phase entry in MyoD-/- myoblasts even in the absence of mitogens. Importantly, this deficit was rescued by forced expression of IκBαSR, a non-degradable mutant of IκBα, indicating that inhibition of NF-κB is sufficient to induce terminal myogenic differentiation in the absence of MyoD. CONCLUSION: MyoD-induced cytoplasmic relocalization of NF-κB is an essential step in linking cell-cycle withdrawal to the terminal differentiation of skeletal myoblasts. These results provide important insight into the unique functions of MyoD in regulating the switch from progenitor proliferation to terminal differentiation.

20.
Mol Cell Biol ; 32(12): 2289-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22473998

RESUMO

Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the differentiation process. However, the mechanisms controlling the dynamic and selective expression of PPARγ in the adipocyte lineage remain largely unknown. We show here that the zinc finger protein Evi1 increases in preadipocytes at the onset of differentiation prior to increases in PPARγ levels. Evi1 expression converts nonadipogenic cells into adipocytes via an increase in the predifferentiation levels of PPARγ2, the adipose-selective isoform of PPARγ. Conversely, loss of Evi1 in preadipocytes blocks the induction of PPARγ2 and suppresses adipocyte differentiation. Evi1 binds with C/EBPß to regulatory sites in the Pparγ locus at early stages of adipocyte differentiation, coincident with the induction of Pparγ2 expression. These results indicate that Evi1 is a key regulator of adipogenic competency.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Proteína beta Intensificadora de Ligação a CCAAT , Proteínas de Ligação a DNA , PPAR gama/genética , Proto-Oncogenes , Fatores de Transcrição , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , PPAR gama/metabolismo , Ligação Proteica , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa