Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Angew Chem Int Ed Engl ; 63(31): e202404243, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747847

RESUMO

6-Thioguanine (6TG) is a clinically used antitumor agent that was rationally designed as a DNA-targeting antimetabolite, but it also occurs naturally. 6TG is a critical virulence factor produced by Erwinia amylovorans, a notorious plant pathogen that causes fire blight of pome fruit trees. The biosynthesis of the rare thioamide metabolite involves an adenylating enzyme (YcfA) and a sulfur-mobilizing enzyme (YcfC), but the mechanism of sulfur transfer and putative intermediates have remained elusive. Through dissection and in vitro reconstitution of the thionation process using diverse substrates, we uncover an intermediate, prodrug-like thio-conjugate and elucidate the precise enzyme functions. YcfA not only adenylates GMP but also transfers the mercapto group of l-cysteine to the activated carbonyl. A designated C-S lyase (YcfC) then cleaves the resulting S-adduct to yield the thioamide. This pathway is distinct from canonical tRNA sulfur modifications and known enzymatic peptide thionations. By exploring a wide range of substrate surrogates, we exploited the tolerance of the enzyme pair to produce even a seleno analog. This study provides valuable insight into a previously unexplored area of bacterial thioamide formation and lays the groundwork for synthetic biology approaches to produce thioamide antimetabolites.


Assuntos
Pró-Fármacos , Tioamidas , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Tioamidas/química , Tioamidas/metabolismo
2.
Angew Chem Int Ed Engl ; 63(30): e202405165, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728443

RESUMO

Various nonribosomal peptide synthetases (NRPSs) create structural and functional diversity by incorporating α-hydroxy acids into peptide backbones. Trigonic acid, an unusual cyclopropanol-substituted hydroxy acid, is the source of the molecular warhead of malleicyprol, a critical virulence factor of human and animal pathogens of the Burkholderia pseudomallei (BP) group. The process of selecting and loading this building block remained enigmatic as the NRPS module designated for this task is incomplete. Using a combination of bioinformatics, mutational analyses, targeted metabolomics, and in vitro biochemical assays, we show that two trans-acting enzymes are required to load this central building block onto the modular assembly line. An adenylation-thiolation didomain enzyme (BurJ) activates trigonic acid, followed by the translocation of the enzyme-bound α-hydroxy acid thioester by an FkbH-like protein with a mutated phosphatase domain (BurH). This specialized gateway is the first reported direct loading of an α-hydroxy acid onto a bona fide NRPS module in bacteria and expands the synthetic biology toolbox for the site-specific incorporation of non-canonical building blocks. Moreover, insight into the biochemical basis of virulence factor biosynthesis can provide a foundation for developing enzyme inhibitors as anti-virulence therapeutics against BP pathogen infections.


Assuntos
Hidroxiácidos , Peptídeo Sintases , Peptídeo Sintases/metabolismo , Hidroxiácidos/metabolismo , Hidroxiácidos/química , Burkholderia pseudomallei/enzimologia , Burkholderia pseudomallei/metabolismo
3.
Biol Pharm Bull ; 46(2): 292-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724957

RESUMO

Methylmercury (MeHg) is a well-known environmental pollutant that has harmful effects on the central nervous systems of humans and animals. The molecular mechanisms of MeHg-induced neurotoxicity at low concentrations are not fully understood. Here, we investigated the effects of low-concentration MeHg on the cell viability, Ca2+ homeostasis, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2 levels, which determine Ca2+ permeability of AMPA receptors, in rat primary cortical neurons. Exposure of cortical neurons to 100 and 300 nM MeHg for 7 d resulted in a decrease in GluA2 levels, an increase in basal intracellular Ca2+ concentration, increased phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2 and p38, and decreased cell viability. Moreover, glutamate stimulation exacerbated the decrease in cell viability and increased intracellular Ca2+ levels in MeHg-treated neurons compared to control neurons. MeHg-induced neuronal cell death was ameliorated by 1-naphthyl acetyl spermine, a specific antagonist of Ca2+-permeable, GluA2-lacking AMPA receptors. Our findings raise the possibility that decreased neuronal GluA2 levels and the subsequent increase in intracellular Ca2+ concentration may contribute to MeHg-induced neurotoxicity.


Assuntos
Compostos de Metilmercúrio , Receptores de AMPA , Animais , Ratos , Cálcio/metabolismo , Células Cultivadas , Ácido Glutâmico/metabolismo , Homeostase , Compostos de Metilmercúrio/metabolismo , Neurônios , Receptores de AMPA/metabolismo
4.
Chembiochem ; 23(21): e202200431, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-35997218

RESUMO

Genomic analyses indicate that anaerobic bacteria represent a neglected source of natural products. Whereas a limited number of polyketides have been reported from anaerobes, products of type III polyketide synthases (PKSs) have remained unknown. We found a highly conserved biosynthetic gene cluster (BGC) comprising genes putatively encoding a type III PKS and a methyltransferase in genomes of the Negativicutes, strictly anaerobic, diderm bacteria. By in vivo and in vitro expression of a type III PKS gene, dquA from the oak-associated Dendrosporobacter quercicolus in E. coli we show production of long-chain alkylpyrones. Intriguingly, this BGC is specific for sporulating Sporomusaceae but absent in related Negativicutes that do not sporulate, thus suggesting a physiological role.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Bactérias Anaeróbias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Policetídeos/metabolismo , Bactérias Gram-Negativas/metabolismo , Firmicutes
5.
Chembiochem ; 23(21): e202200430, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36107027

RESUMO

Various bacterial species are capable of producing highly modified fatty acid derivatives with conjugated triple bonds, which play important ecological roles as antifungals and toxins in mutualistic and pathogenic interactions. Furthermore, the terminal polyyne moiety is of interest as pharmacophore and as tag in bioorthogonal chemistry and live imaging. To gain insight into the assembly of these highly reactive natural products, we investigated tetrayne (caryoynencin and protegencin) biosynthesis genes (cay and pgn) from Trinickia caryophylli and Pseudomonas protegens. Pathway dissection and reconstitution in the heterologous host Burkholderia graminis revealed the genes minimally required for polyyne formation. Mutational analyses and biochemical assays demonstrated that polyyne biosynthesis is thiotemplated, involving a fatty acyl-AMP ligase, a designated acyl carrier protein, and a thioesterase. Heterologous expression of point-mutated desaturase genes showed that three desaturases work synergistically to introduce four triple bonds. These findings point to an intricate desaturase complex and provide important information for future bioengineering experiments.


Assuntos
Bactérias , Ácidos Graxos , Ácidos Graxos/química , Bactérias/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Poli-Inos
6.
Biol Pharm Bull ; 45(10): 1510-1517, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922913

RESUMO

Royal jelly (RJ) has beneficial effects on human health, and some of these effects are reported to be the result of its estrogenic activity; however, chemicals with estrogenic activities may disrupt physiological estrogen signaling leading to adverse effects on human health. Thus, clarification of the mode of action of RJ is needed. Here, we investigated whether the estrogen-like actions of RJ are induced via estrogen receptors (ERs)-mediated genomic actions by using an in vitro reporter assay in human choriocarcinoma JEG3 cells and an estrogen-responsive reporter (E-Rep) mouse line that can be used to sensitively detect transactivation of ERs in multiple organs simultaneously. In the in vitro reporter assay, ERs-dependent transcriptional activity was significantly increased by 17ß-estradiol (E2) treatment at concentrations of 1 nM and above, confirming that the assay was highly responsive to estrogen; however, RJ did not exhibit any agonist activity via either the α or ß form of ER. Similarly, in E-Rep mice, E2 showed significant ERs-dependent genomic action in 17 tissue types including uterus and mammary gland, whereas RJ did not. Thus, unlike endocrine-disrupting chemicals, the estrogen-like activity of RJ is unlikely to be due to genomic actions via ERs.


Assuntos
Estrogênios , Receptores de Estrogênio , Potenciais de Ação , Animais , Linhagem Celular Tumoral , Estradiol/metabolismo , Receptor alfa de Estrogênio , Estrogênios/farmacologia , Ácidos Graxos , Feminino , Genômica , Humanos , Camundongos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais
7.
Angew Chem Int Ed Engl ; 61(26): e202203264, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416382

RESUMO

Caryoynencin is a toxic and antifungal fatty acid derivative produced by a number of plant-pathogenic and insect-protective bacteria (Trinickia caryophylli and Burkholderia spp.). In addition to the reactive tetrayne unit, the presence of an allylic alcohol moiety is critical for antimicrobial activities. By a combination of mutational analyses, heterologous expression and in vitro reconstitution experiments we show that the cytochrome P450 monooxygenase CayG catalyzes the complex transformation of a saturated carbon backbone into an allylic alcohol. Unexpectedly, CayG employs a ferritin-like protein (CayK) or a rubredoxin (CayL) component for electron transport. A desaturation-hydroxylation sequence was deduced from a time-course study and in vitro biotransformations with pathway intermediates, substrate analogues, protegencin congeners from Pseudomonas protegens Pf-5, and synthetic derivatives. This unusual multifunctional oxygenase may inspire future biocatalytic applications.


Assuntos
Sistema Enzimático do Citocromo P-450 , Propanóis , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Oxirredução
8.
Angew Chem Int Ed Engl ; 61(26): e202204545, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35403785

RESUMO

Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds.


Assuntos
Nostoc , Vias Biossintéticas/genética , Família Multigênica , Nostoc/genética , Metabolismo Secundário/genética , Simbiose
9.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948335

RESUMO

Propolis is a resinous mixture produced by bees from their secretions and plant material, so its composition varies depending on its botanical origin. Propolis has several beneficial bioactivities, but its skin sensitization properties have long been suspected. Nevertheless, the skin sensitization potency of Brazilian green propolis (BGP) has not been scientifically evaluated. Here, we used scientifically reliable tests to evaluate it. In vitro antigenicity test based on the human cell line activation test (OECD TG 442E) was performed by measuring the expression of CD54 and CD86, which are indicators of the antigenicity of test substances, on THP-1 and DC2.4 cells. BGP did not affect the expression of either marker on THP-1 cells, but upregulated the expression of CD86 on DC2.4 cells, suggesting that BGP may be a skin sensitizer. Then, we performed local lymph node assay (LLNA, OECD TG 429) as a definitive in vivo test. LLNA showed that 1.70% BGP primed skin sensitization and is a "moderate sensitizer". Our results indicate scientific proof of the validity of arbitrary concentrations (1-2%), which have been used empirically, and provide the first scientific information on the safe use of BGP.


Assuntos
Alérgenos , Dermatite Alérgica de Contato , Própole/farmacologia , Pele/efeitos dos fármacos , Animais , Brasil , Linhagem Celular , Feminino , Humanos , Ensaio Local de Linfonodo , Camundongos , Células THP-1
10.
Chemistry ; 26(68): 15855-15858, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32996646

RESUMO

The anaerobe Clostridium acetobutylicum belongs to the most important industrially used bacteria. Whereas genome mining points to a high potential for secondary metabolism in C. acetobutylicum, the functions of most biosynthetic gene clusters are cryptic. We report that the addition of supra-physiological concentrations of cysteine triggered the formation of a novel natural product, clostrisulfone (1). Its structure was fully elucidated by NMR, MS and the chemical synthesis of a reference compound. Clostrisulfone is the first reported natural product with a diphenylsulfone scaffold. A biomimetic synthesis suggests that pentamethylchromanol-derived radicals capture sulfur dioxide to form 1. In a cell-based assay using murine macrophages a biphasic and dose-dependent regulation of the LPS-induced release of nitric oxide was observed in the presence of 1.


Assuntos
Clostridium acetobutylicum , Fatores Imunológicos , Sulfonas , Animais , Clostridium acetobutylicum/química , Clostridium acetobutylicum/efeitos dos fármacos , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Cisteína/farmacologia , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Família Multigênica , Sulfonas/metabolismo , Sulfonas/farmacologia
11.
Chemistry ; 26(58): 13147-13151, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32597507

RESUMO

Anaerobic bacteria have only recently been recognized as a source of antibiotics; yet, the metabolic potential of Negativicutes (Gram-negative staining Firmicutes) such as the oak-associated Dendrosporobacter quercicolus has remained unknown. Genome mining of D. quercicolus and phylogenetic analyses revealed a gene cluster for a type II polyketide synthase (PKS) complex that belongs to the most ancestral enzyme systems of this type. Metabolic profiling, NMR analyses, and stable-isotope labeling led to the discovery of a new family of anthraquinone-type polyphenols, the dendrubins, which are diversified by acylation, methylation, and dimerization. Dendrubin A and B were identified as strong antibiotics against a range of clinically relevant, human-pathogenic mycobacteria.


Assuntos
Policetídeo Sintases , Quercus , Antibacterianos/química , Antibacterianos/farmacologia , Firmicutes , Humanos , Família Multigênica , Filogenia , Policetídeo Sintases/química , Policetídeo Sintases/genética
12.
Nat Chem Biol ; 14(9): 841-843, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061716

RESUMO

Genome mining and chemical analyses revealed that rhizosphere bacteria (Paraburkholderia graminis) produce a new type of siderophore, gramibactin, a lipodepsipeptide that efficiently binds iron with a logß value of 27.6. Complexation-induced proton NMR chemical shifts show that the unusual N-nitrosohydroxylamine (diazeniumdiolate) moieties participate in metal binding. Gramibactin biosynthesis genes are conserved in numerous plant-associated bacteria associated with rice, wheat, and maize, which may utilize iron from the complex.


Assuntos
Compostos Azo/química , Burkholderiaceae/química , Sideróforos/química , Ligantes , Potenciometria , Sideróforos/isolamento & purificação , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
13.
Angew Chem Int Ed Engl ; 59(51): 23122-23126, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32588959

RESUMO

Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.


Assuntos
4-Butirolactona/análogos & derivados , Antifúngicos/farmacologia , Burkholderia/química , Hypocreales/efeitos dos fármacos , Policetídeos/farmacologia , 4-Butirolactona/biossíntese , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Besouros , Testes de Sensibilidade Microbiana , Policetídeos/química , Policetídeos/metabolismo
14.
Angew Chem Int Ed Engl ; 59(32): 13511-13515, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32314848

RESUMO

Pathogenic bacteria of the Burkholderia pseudomallei group cause severe infectious diseases such as glanders and melioidosis. Malleicyprols were identified as important bacterial virulence factors, yet the biosynthetic origin of their cyclopropanol warhead has remained enigmatic. By a combination of mutational analysis and metabolomics we found that sulfonium acids, dimethylsulfoniumpropionate (DMSP) and gonyol, known as osmolytes and as crucial components in the global organosulfur cycle, are key intermediates en route to the cyclopropanol unit. Functional genetics and in vitro analyses uncover a specialized pathway to DMSP involving a rare prokaryotic SET-domain methyltransferase for a cryptic methylation, and show that DMSP is loaded onto the NRPS-PKS hybrid assembly line by an adenylation domain dedicated to zwitterionic starter units. Then, the megasynthase transforms DMSP into gonyol, as demonstrated by heterologous pathway reconstitution in E. coli.


Assuntos
Burkholderia/química , Ciclopropanos/metabolismo , Propanóis/metabolismo , Compostos de Sulfônio/metabolismo , Fatores de Virulência/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Burkholderia/enzimologia , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Alinhamento de Sequência
15.
Angew Chem Int Ed Engl ; 58(50): 18252-18256, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31595618

RESUMO

The structural wealth of complex polyketide metabolites produced by bacteria results from intricate, highly evolved biosynthetic programs of modular assembly lines, in which the number of modules defines the size of the backbone, and the domain composition controls the degree of functionalization. We report a remarkable case where polyketide chain length and scaffold depend on the function of a single ß-keto processing domain: A ketoreductase domain represents a switch between diverging biosynthetic pathways leading either to the antifungal aureothin or to the nematicidal luteoreticulin. By a combination of heterologous expression, mutagenesis, metabolite analyses, and in vitro biotransformation we elucidate the factors governing non-colinear polyketide assembly involving module skipping and demonstrate that a simple point mutation in type I polyketide synthase (PKS) can have a dramatic effect on the metabolic profile. This finding sheds new light on possible evolutionary scenarios and may inspire future synthetic biology approaches.


Assuntos
Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Cromonas/metabolismo , Microrganismos Geneticamente Modificados , Mutagênese , Fenilalanina/genética , Mutação Puntual , Policetídeo Sintases/química , Domínios Proteicos , Pironas/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Tirosina/genética
16.
Angew Chem Int Ed Engl ; 58(1): 200-204, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30375753

RESUMO

In microbial interactions bacteria employ diverse molecules with specific functions, such as sensing the environment, communication with other microbes or hosts, and conferring virulence. Insights into the molecular basis of bacterial communication are thus of high relevance for ecology and medicine. Targeted gene activation and in vitro studies revealed that the cell-to-cell signaling molecule and disease mediator IQS (aeruginaldehyde) of the human pathogen Pseudomonas aeruginosa and related bacteria derives from the siderophore pyochelin. Addition of IQS to bacterial cultures (Burkholderia thailandensis) showed that the signaling molecule is captured by a congener of another siderophore family, malleobactin, to form a nitrone conjugate (malleonitrone) that is active against the IQS-producer. This study uncovers complex communication processes with derailed siderophore functions, a novel nitrone bioconjugation, and a new type of antibiotic against Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/química , Óxidos de Nitrogênio/química , Sideróforos/química
17.
Angew Chem Int Ed Engl ; 58(40): 14129-14133, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353766

RESUMO

Burkholderia species such as B. mallei and B. pseudomallei are bacterial pathogens causing fatal infections in humans and animals (glanders and melioidosis), yet knowledge on their virulence factors is limited. While pathogenic effects have been linked to a highly conserved gene locus (bur/mal) in the B. mallei group, the metabolite associated to the encoded polyketide synthase, burkholderic acid (syn. malleilactone), could not explain the observed phenotypes. By metabolic profiling and molecular network analyses of the model organism B. thailandensis, the primary products of the cryptic pathway were identified as unusual cyclopropanol-substituted polyketides. First, sulfomalleicyprols were identified as inactive precursors of burkholderic acid. Furthermore, a highly reactive upstream metabolite, malleicyprol, was discovered and obtained in two stabilized forms. Cell-based assays and a nematode infection model showed that the rare natural product confers cytotoxicity and virulence.


Assuntos
Burkholderia/metabolismo , Éteres Cíclicos/metabolismo , Policetídeos/metabolismo , Fatores de Virulência/metabolismo , Animais , Burkholderia/genética , Burkholderia/patogenicidade , Caenorhabditis elegans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Éteres Cíclicos/química , Éteres Cíclicos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Células K562 , Estrutura Molecular , Policetídeos/química , Policetídeos/farmacologia , Virulência , Fatores de Virulência/química , Fatores de Virulência/farmacologia
18.
Angew Chem Int Ed Engl ; 58(37): 13024-13029, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276269

RESUMO

Siderophores are key players in bacteria-host interactions, with the main function to provide soluble iron for their producers. Gramibactin from rhizosphere bacteria expands siderophore function and diversity as it delivers iron to the host plant and features an unusual diazeniumdiolate moiety for iron chelation. By mutational analysis of the grb gene cluster, we identified genes (grbD and grbE) necessary for diazeniumdiolate formation. Genome mining using a GrbD-based network revealed a broad range of orthologous gene clusters in mainly plant-associated Burkholderia/Paraburkholderia species. Two new types of diazeniumdiolate siderophores, megapolibactins and plantaribactin were fully characterized. In vitro assays and in vivo monitoring experiments revealed that the iron chelators also liberate nitric oxide (NO) in plant roots. This finding is important since NO donors are considered as biofertilizers that maintain iron homeostasis and increase overall plant fitness.


Assuntos
Compostos Azo/metabolismo , Burkholderia/metabolismo , Óxido Nítrico/metabolismo , Sideróforos/metabolismo , Burkholderia/genética , Genômica , Ferro/metabolismo , Família Multigênica , Raízes de Plantas/microbiologia , Plantas/microbiologia , Sideróforos/genética
19.
Arch Toxicol ; 92(1): 401-409, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28725974

RESUMO

Glutamate receptor 2 (GluA2/GluR2) is one of the four subunits of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR); an increase in GluA2-lacking AMPARs contributes to neuronal vulnerability to excitotoxicity because of the receptor's high Ca2+ permeability. Carbofuran is a carbamate pesticide used in agricultural areas to increase crop productivity. Due to its broad-spectrum action, carbofuran has also been used as an insecticide, nematicide, and acaricide. In this study, we investigated the effect of carbofuran on GluA2 protein expression. The 9-day treatment of rat primary cortical neurons with 1 µM and 10 µM carbofuran decreased GluA2 protein expression, but not that of GluA1, GluA3, or GluA4 (i.e., other AMPAR subunits). Decreased GluA2 protein expression was also observed on the cell surface membrane of 10 µM carbofuran-treated neurons, and these neurons showed an increase in 25 µM glutamate-triggered Ca2+ influx. Treatment with 50 µM glutamate, which did not affect the viability of control neurons, significantly decreased the viability of 10 µM carbofuran-treated neurons, and this effect was abolished by pre-treatment with 300 µM 1-naphthylacetylspermine, an antagonist of GluA2-lacking AMPAR. At a concentration of 100 µM, but not 1 or 10 µM, carbofuran significantly decreased acetylcholine esterase activity, a well-known target of this chemical. These results suggest that carbofuran decreases GluA2 protein expression and increases neuronal vulnerability to glutamate toxicity at concentrations that do not affect acetylcholine esterase activity.


Assuntos
Carbofurano/toxicidade , Córtex Cerebral/citologia , Ácido Glutâmico/toxicidade , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Acetilcolinesterase/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/embriologia , Inibidores da Colinesterase/toxicidade , Feminino , Proteínas Ligadas por GPI/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Gravidez , Ratos Wistar , Espermina/análogos & derivados , Espermina/farmacologia
20.
Proc Natl Acad Sci U S A ; 112(6): 1862-7, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25624477

RESUMO

Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme.


Assuntos
Diferenciação Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Nostoc/fisiologia , Peptídeos/metabolismo , Fenômenos Fisiológicos Vegetais , Simbiose/fisiologia , Cromatografia Líquida de Alta Pressão , Embriófitas/microbiologia , Embriófitas/fisiologia , Magnoliopsida/microbiologia , Magnoliopsida/fisiologia , Estrutura Molecular , Nostoc/metabolismo , Peptídeos/química , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa