Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breed Sci ; 72(4): 306-315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36699825

RESUMO

The pathogen Colletotrichum orbiculare is causal fungus of cucurbit anthracnose. Multiple races have been identified in the United States, suggesting that it is necessary to cultivate suitable resistant cultivars and breed new cultivars with the most suitable resistance gene. This study examined the pathogenicity and virulence of 20 strains in Japan to clarify the existence of races and virulence differences. Based on the symptoms on inoculated cotyledons and true leaves of watermelon, we could evaluate the compatibility of each strain to each host cultivar. Our analysis based on the reaction to the host cultivar harboring the resistance gene Ar-1 (Cla001017) revealed the existence of three races in Japan. An alarming result was that a race that overcame Ar-1, which is a target gene in current watermelon breeding in Japan, is present in Japan. The cucumber and melon host cultivars showed diverse symptoms, whereas a squash cultivar was resistant to all strains. Three strains caused severe damage even to the most resistant cucumber cultivar 'Ban Kyuri' and resistant cultivars harboring Cssgr, a well-known gene conferring loss-of-susceptibility resistance. Screening genetic resources for novel resistance genes using strains with high virulence is of vital importance for watermelon, cucumber, and melon production.

2.
Mol Plant Microbe Interact ; 34(7): 746-757, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33587000

RESUMO

Pseudomonas cannabina pv. alisalensis is a causative agent of bacterial blight of crucifers including cabbage, radish, and broccoli. Importantly, P. cannabina pv. alisalensis can infect not only a wide range of Brassicaceae spp. but, also, green manure crops such as oat. However, P. cannabina pv. alisalensis virulence mechanisms have not been investigated and are not fully understood. We focused on coronatine (COR) function, which is one of the well-known P. syringae pv. tomato DC3000 virulence factors, in P. cannabina pv. alisalensis infection processes on both dicot and monocot plants. Cabbage and oat plants dip-inoculated with a P. cannabina pv. alisalensis KB211 COR mutant (ΔcmaA) exhibited reduced virulence compared with P. cannabina pv. alisalensis wild type (WT). Moreover, ΔcmaA failed to reopen stomata on both cabbage and oat, suggesting that COR facilitates P. cannabina pv. alisalensis entry through stomata into both plants. Furthermore, cabbage and oat plants syringe-infiltrated with ΔcmaA also showed reduced virulence, suggesting that COR is involved in overcoming not only stomatal-based defense but also apoplastic defense. Indeed, defense-related genes, including PR1 and PR2, were highly expressed in plants inoculated with ΔcmaA compared with WT, indicating that COR suppresses defense-related genes of both cabbage and oat. Additionally, salicylic acid accumulation increases after ΔcmaA inoculation compared with WT. Taken together, COR contributes to causing disease by suppressing stomatal-based defense and apoplastic defense in both dicot and monocot plants. Here, we investigated COR functions in the interaction of P. cannabina pv. alisalensis and different host plants (dicot and monocot plants), using genetically and biochemically defined COR deletion mutants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2021.


Assuntos
Doenças das Plantas , Pseudomonas syringae , Aminoácidos , Indenos , Pseudomonas , Virulência
3.
Plant Cell Environ ; 41(9): 1997-2007, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29047109

RESUMO

Downregulation of lignin in alfalfa (Medicago sativa L.) is associated with increased availability of cell wall polysaccharides in plant cells. We tested transgenic alfalfa plants downregulated for Caffeoyl-CoA O-methyltransferase (CCoAOMT) against an economically important fungal disease of alfalfa, Fusarium wilt caused by Fusarium oxysporum f. sp. medicaginis, and found it more resistant to this disease. Transcriptomic and metabolomic analyses indicated that the improved disease resistance against Fusarium wilt is due to increased accumulation and/or spillover of flux towards the (iso)flavonoid pathway. Some (iso)flavonoids and their pathway intermediate compounds showed strong accumulation in CCoAOMT downregulated plants after F. oxysporum f. sp. medicaginis inoculation. The identified (iso)flavonoids, including medicarpin and 7,4'-dihydroxyflavone, inhibited the in vitro growth of F. oxysporum f. sp. medicaginis. These results suggested that the increased accumulation and/or shift/spillover of flux towards the (iso)flavonoid pathway in CCoAOMT downregulated plants is associated with induced disease resistance.


Assuntos
Flavonoides/metabolismo , Fusarium/patogenicidade , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Resistência à Doença/genética , Flavonoides/genética , Flavonoides/farmacologia , Fusarium/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Lignina/genética , Lignina/metabolismo , Medicago sativa/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Pterocarpanos/genética , Pterocarpanos/metabolismo , Pterocarpanos/farmacologia , Ácido Salicílico/metabolismo
4.
Mol Plant Microbe Interact ; 30(10): 829-841, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28703028

RESUMO

Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glucosinolatos/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo
5.
Mol Plant Microbe Interact ; 29(2): 119-31, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26554736

RESUMO

Reactive oxygen species (ROS) have been shown to have a crucial role in plant defense responses and signaling pathways. In addition, ROS also have direct toxicity against pathogens. However, the molecular mechanisms of plant ROS in the direct effects against pathogens is still unclear. To investigate the function of plant ROS in the interactions of plant and bacterial pathogens, we focused on oxyR, encoding an oxidative stress-regulated transcription factor in Pseudomonas syringae pv. tomato DC3000 (DC3000), and generated an ΔoxyR mutant. The DC3000 ΔoxyR mutant showed high sensitivity to oxidative stress in comparison with wild type and the complemented line. The host plants of DC3000, including tomato and Arabidopsis inoculated with the ΔoxyR mutant, clearly showed reduced disease symptoms as well as reduced bacterial populations. Expression profiles of DC3000 genes revealed that OxyR could regulate the expression of genes encoding ROS-detoxifying enzymes, including catalases (KatB and KatG), in response to ROS. We also demonstrated that the expression of katB could be regulated by OxyR during the infection of DC3000 in Arabidopsis. These results suggest that OxyR has an important role in the virulence of DC3000 by regulating the expression of genes related to oxidative stress.


Assuntos
Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Transativadores/metabolismo , Arabidopsis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transativadores/genética , Virulência
6.
J Exp Bot ; 67(8): 2519-2532, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26931169

RESUMO

Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions.


Assuntos
Ácido Abscísico/farmacologia , Alantoína/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Metaboloma/efeitos dos fármacos , Oxilipinas/metabolismo , Purinas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Ciclopentanos/farmacologia , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Mutação/genética , Oxilipinas/farmacologia , Pectobacterium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Pseudomonas syringae/efeitos dos fármacos , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Plant Cell ; 24(1): 353-70, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22294617

RESUMO

To identify genes that confer nonhost resistance to biotrophic fungal pathogens, we did a forward-genetics screen using Medicago truncatula Tnt1 retrotransposon insertion lines. From this screen, we identified an inhibitor of rust germ tube differentation1 (irg1) mutant that failed to promote preinfection structure differentiation of two rust pathogens, Phakopsora pachyrhizi and Puccinia emaculata, and one anthracnose pathogen, Colletotrichum trifolii, on the abaxial leaf surface. Cytological and chemical analyses revealed that the inhibition of rust preinfection structures in irg1 mutants is due to complete loss of the abaxial epicuticular wax crystals and reduced surface hydrophobicity. The composition of waxes on abaxial leaf surface of irg1 mutants had >90% reduction of C30 primary alcohols and a preferential increase of C29 and C31 alkanes compared with the wild type. IRG1 encodes a Cys(2)His(2) zinc finger transcription factor, PALM1, which also controls dissected leaf morphology in M. truncatula. Transcriptome analysis of irg1/palm1 mutants revealed downregulation of eceriferum4, an enzyme implicated in primary alcohol biosynthesis, and MYB96, a major transcription factor that regulates wax biosynthesis. Our results demonstrate that PALM1 plays a role in regulating epicuticular wax metabolism and transport and that epicuticular wax influences spore differentiation of host and nonhost fungal pathogens.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Ceras/metabolismo , Basidiomycota/patogenicidade , Colletotrichum/patogenicidade , Medicago truncatula/genética , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia
8.
Int J Mol Sci ; 14(5): 9497-513, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23644883

RESUMO

Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested.


Assuntos
Aclimatação , Ascomicetos/fisiologia , Secas , Nicotiana/microbiologia , Nicotiana/fisiologia , Pseudomonas syringae/fisiologia , Estresse Fisiológico , Ácido Abscísico/farmacologia , Aclimatação/efeitos dos fármacos , Aclimatação/genética , Ascomicetos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Pseudomonas syringae/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/citologia , Nicotiana/genética
9.
Plants (Basel) ; 12(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36771673

RESUMO

The genus Pseudomonas includes some of the most problematic and studied foliar bacterial pathogens. Generally, in a successful disease cycle there is an initial epiphytic lifestyle on the leaf surface and a subsequent aggressive endophytic stage inside the leaf apoplast. Leaf-associated bacterial pathogens enter intercellular spaces and internal leaf tissues by natural surface opening sites, such as stomata. The stomatal crossing is complex and dynamic, and functional genomic studies have revealed several virulence factors required for plant entry. Currently, treatments with copper-containing compounds, where authorized and admitted, and antibiotics are commonly used against bacterial plant pathogens. However, strains resistant to these chemicals occur in the fields. Therefore, the demand for alternative control strategies has been increasing. This review summarizes efficient strategies to prevent bacterial entry. Virulence factors required for entering the leaf in plant-pathogenic Pseudomonas species are also discussed.

10.
Plant Sci ; 327: 111534, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36379298

RESUMO

Bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis (Pcal) inflicts great damage on crucifer production. To explore efficient and sustainable strategies for Pcal disease control, we here investigated and screened for amino acids with reduced disease development. We found that exogenous foliar application with multiple amino acids reduced disease symptoms and bacterial populations in cabbage after spray-inoculation, but not syringe-inoculation. These results indicate that these amino acids showed a protective effect before Pcal entered plants. Therefore, we observed stomatal responses, which is a main gateway for Pcal entry into the apoplast, after amino acid treatments. As a results, we found several amino acids induce stomatal closure. Moreover, our findings demonstrated that reducing stomatal aperture width can limit bacterial entry into plants, leading to reduced disease symptoms. Indeed, Cys, Glu, and Lys, which showed a protective effect on cabbage, reduced stomatal aperture width and bacterial entry. Therefore, managing stomatal aperture can be a powerful strategy for controlling bacterial disease.


Assuntos
Infecções Bacterianas , Brassica , Brassica/microbiologia , Infecções Bacterianas/metabolismo , Plantas , Bactérias , Aminoácidos/metabolismo , Estômatos de Plantas/metabolismo
11.
Microorganisms ; 11(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110448

RESUMO

Pseudomonas cannabina pv. alisalensis (Pcal) causes bacterial blight on cabbage. We previously conducted a screening for reduced virulence using Tn5 transposon mutants and identified one of the transcriptional factors, HexR, as a potential Pcal virulence factor. However, the role of HexR in plant pathogenic Pseudomonas virulence has not been investigated well. Here, we demonstrated that the Pcal hexR mutant showed reduced disease symptoms and bacterial populations on cabbage, indicating that HexR contributes to Pcal virulence. We used RNA-seq analysis to characterize the genes regulated by HexR. We found that several type three secretion system (T3SS)-related genes had lower expression of the Pcal hexR mutant. Five genes were related to T3SS machinery, two genes were related to type three helper proteins, and three genes encoded type three effectors (T3Es). We also confirmed that T3SS-related genes, including hrpL, avrPto, hopM1, and avrE1, were also down-regulated in the Pcal hexR mutant both in culture and in vivo by using RT-qPCR. T3SS functions to suppress plant defense in host plants and induce hypersensitive response (HR) cell death in non-host plants. Therefore, we investigated the expression profiles of cabbage defense-related genes, including PR1 and PR5, and found that the expressions of these genes were greater in the Pcal hexR mutant. We also demonstrated that the hexR mutant did not induce HR cell death in non-host plants, indicating that HexR contributes in causing HR in nonhost plants. Together, these results indicate that the mutation in hexR leads to a reduction in the T3SS-related gene expression and thus an impairment in plant defense suppression, reducing Pcal virulence.

12.
Mol Plant Microbe Interact ; 25(3): 294-306, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22112219

RESUMO

Coronatine (COR)-producing pathovars of Pseudomonas syringae, including pvs. tomato, maculicola, and glycinea, cause important diseases on tomato, crucifers, and soybean, respectively, and produce symptoms with necrotic lesions surrounded by chlorosis. The chlorosis is mainly attributed to COR. However, the significance of COR-induced chlorosis in localized lesion development and the molecular basis of disease-associated cell death is largely unknown. To identify host (chloroplast) genes that play a role in COR-mediated chlorosis, we used a forward genetics approach using Nicotiana benthamiana and virus-induced gene silencing and identified a gene which encodes 2-Cys peroxiredoxin (Prxs) that, when silenced, produced a spreading hypersensitive or necrosis-like phenotype instead of chlorosis after COR application in a COI1-dependent manner. Loss-of-function analysis of Prx and NADPH-dependent thioredoxin reductase C (NTRC), the central players of a chloroplast redox detoxification system, resulted in spreading accelerated P. syringae pv. tomato DC3000 disease-associated cell death with enhanced reactive oxygen species (ROS) accumulation in a COR-dependent manner in tomato and Arabidopsis. Consistent with these results, virulent strain DC3000 suppressed the expression of Prx and NTRC in Arabidopsis and tomato during pathogenesis. However, interestingly, authentic COR suppressed the expression of Prx and NTRC in tomato but not in Arabidopsis, suggesting that COR in conjunction with other effectors may modulate ROS and cell death in different host species. Taken together, these results indicated that NTRC or Prx function as a negative regulator of pathogen-induced cell death in the healthy tissues that surround the lesions, and COR-induced chloroplast-localized ROS play a role in enhancing the disease-associated cell death.


Assuntos
Arabidopsis/enzimologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/enzimologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Indenos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Mutação , Oxirredução , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fenótipo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudomonas syringae/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/microbiologia
14.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807692

RESUMO

Bacteria are exposed to and tolerate diverse and potentially toxic compounds in the natural environment. While efflux transporters are generally thought to involve bacterial antibiotic resistance in vitro, their contributions to plant bacterial virulence have so far been poorly understood. Pseudomonas cannabina pv. alisalensis (Pcal) is a causal agent of bacterial blight of Brassicaceae. We here demonstrated that NU19, which is mutated in the resistance-nodulation-cell division (RND) transporter encoded gene, showed reduced virulence on cabbage compared to WT, indicating that the RND transporter contributes to Pcal virulence on cabbage. We also demonstrated that brassinin biosynthesis was induced after Pcal infection. Additionally, the RND transporter was involved in resistance to plant-derived antimicrobials and antibiotics, including the cabbage phytoalexin brassinin. These results suggest that the RND transporter extrudes plant-derived antimicrobials and contributes to Pcal virulence. We also found that the RND transporter contributes to Pcal virulence on Brassicaceae and tomato, but not on oat. These results suggest that the RND transporter contributes to Pcal virulence differentially depending on the host-plant species. Lastly, our expression-profile analysis indicated that the type-three secretion system (TTSS), which is essential for pathogenesis, is also involved in suppressing brassinin biosynthesis. Taken together, our results suggest that several Pcal virulence factors are involved in resistance to plant-derived antimicrobials and bacterial survival during infection.

15.
Plants (Basel) ; 12(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616271

RESUMO

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production worldwide. Four biovars (Psa biovar 1; Psa1, Psa biovar 3; Psa3, Psa biovar 5; Psa5, and Psa biovar 6; Psa6) were reported in Japan, and virulent Psa3 strains spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the dynamic interactions between Psa and kiwifruit. To investigate the molecular mechanism of Psa3 infection, we developed a rapid and reliable high-throughput flood-inoculation method using kiwifruit seedlings. Using this inoculation method, we screened 3000 Psa3 transposon insertion mutants and identified 91 reduced virulence mutants and characterized the transposon insertion sites in these mutants. We identified seven type III secretion system mutants, and four type III secretion effectors mutants including hopR1. Mature kiwifruit leaves spray-inoculated with the hopR1 mutant showed significantly reduced virulence compared to Psa3 wild-type, indicating that HopR1 has a critical role in Psa3 virulence. Deletion mutants of hopR1 in Psa1, Psa3, Psa5, and Psa6 revealed that the type III secretion effector HopR1 is a major virulence factor in these biovars. Moreover, hopR1 mutants of Psa3 failed to reopen stomata on kiwifruit leaves, suggesting that HopR1 facilitates Psa entry through stomata into plants. Furthermore, defense related genes were highly expressed in kiwifruit plants inoculated with hopR1 mutant compared to Psa wild-type, indicating that HopR1 suppresses defense-related genes of kiwifruit. These results suggest that HopR1 universally contributes to virulence in all Psa biovars by overcoming not only stomatal-based defense, but also apoplastic defense.

16.
Plant Sci ; 321: 111309, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696909

RESUMO

Medicago truncatula is a model system for legume plants, which has substantially expanded the genome relative to the prototypical model dicot plant, Arabidopsis thaliana. An essential transcriptional regulator, FCP1 (transcription factor IIF-interacting RNA polymerase II carboxyl-terminal phosphatase 1) ortholog, is encoded by a single essential gene CPL4 (CTD-phosphatase-like 4), whereas M. truncatula genome contains four genes homologous to FCP1/AtCPL4, and splicing variants of MtCPL4 are observed. Functional diversification of MtCPL4 family proteins was analyzed using recombinant proteins (MtCPL4a1, MtCPL4a2, and MtCPL4b) produced in Arabidopsis cell culture system developed for plant protein overexpression. In vitro CTD phosphatase assay using highly purified MtCPL4 preparations revealed a potent CTD phosphatase activity in MtCPL4b, but not two splicing variants of MtCPL4a. On the other hand, in planta binding assay to RNA polymerase II (pol II) revealed a greater pol II-binding activity of both MtCPL4a variants. Our results indicate functional diversification of MtCPL4 isoforms and suggest the presence of a large number of functionally specialized CTD-phosphatase-like proteins in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Medicago truncatula , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fosfoproteínas Fosfatases/genética , Isoformas de Proteínas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
17.
New Phytol ; 189(1): 83-93, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20854394

RESUMO

• Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) causes an economically important bacterial speck disease on tomato and produces symptoms with necrotic lesions surrounded by chlorosis. The chlorosis is mainly attributed to a jasmonic acid (JA)-isoleucine analogue, coronatine (COR), produced by Pst DC3000. However, the molecular processes underlying lesion development and COR-induced chlorosis are poorly understood. • In this study, we took advantage of a chlorotic phenotype elicited by COR on Nicotiana benthamiana leaves and virus-induced gene silencing (VIGS) as a rapid reverse genetic screening tool and identified a role for SGT1 (suppressor of G2 allele of skp1) in COR-induced chlorosis. • Silencing of SGT1 in tomato resulted in reduction of disease-associated symptoms (cell death and chlorosis), suggesting a molecular connection between COR-induced chlorosis and cell death. In Arabidopsis, AtSGT1b but not AtSGT1a was required for COR responses, including root growth inhibition and Pst DC3000 symptom (water soaked lesion) development. Notably, overexpression of AtSGT1b did not alter Pst DC3000 symptoms or sensitivity to COR. • Taken together, our results demonstrate that SGT1/SGT1b is required for COR-induced chlorosis and subsequent necrotic disease development in tomato and Arabidopsis. SGT1 is therefore a component of the COR/JA-mediated signal transduction pathway.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/microbiologia , Glucosiltransferases/fisiologia , Indenos/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Inativação Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
18.
Front Microbiol ; 12: 659734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959115

RESUMO

Pseudomonas cannabina pv. alisalensis (Pcal) causes bacterial leaf spot and blight of Brassicaceae and Poaceae. We previously identified several potential Pcal virulence factors with transposon mutagenesis. Among these a trpA mutant disrupted the tryptophan synthase alpha chain, and had an effect on disease symptom development and bacterial multiplication. To assess the importance of TrpA in Pcal virulence, we characterized the trpA mutant based on inoculation test and Pcal gene expression profiles. The trpA mutant showed reduced virulence when dip- and syringe-inoculated on cabbage and oat. Moreover, epiphytic bacterial populations of the trpA mutant were also reduced compared to the wild-type (WT). These results suggest that TrpA contributes to bacterial multiplication on the leaf surface and in the apoplast, and disease development. Additionally, several Brassicaceae (including Japanese radish, broccoli, and Chinese cabbage) also exhibited reduced symptom development when inoculated with the trpA mutant. Moreover, trpA disruption led to downregulation of bacterial virulence genes, including type three effectors (T3Es) and the phytotoxin coronatine (COR), and to upregulation of tryptophan biosynthesis genes. These results indicate that a trade-off between virulence factor production and Pcal multiplication with tryptophan might be regulated in the infection processes.

19.
PeerJ ; 9: e12405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760389

RESUMO

Pseudomonas savastanoi pv. glycinea (Psg) causes bacterial blight of soybean. To identify candidate virulence factors, transposon-mediated mutational analysis of Psg was carried out. We syringe-inoculated soybean leaves with Psg transposon mutants and identified 28 mutants which showed reduced virulence from 1,000 mutants screened. Next, we spray-inoculated soybean leaves with these mutants and demonstrated that the algU mutant showed significantly reduced virulence together with reduced bacterial populations in planta. Expression profiles comparison between the Psg wild-type (WT) and algU mutant in HSC broth revealed that expression of coronatine (COR)-related genes (including cmaA and corR) were down-regulated in the algU mutant compared with Psg WT. Moreover, we also showed that COR production were reduced in the algU mutant compared with WT. We also demonstrated that algD, which is related to alginate biosynthesis, showed reduced expression and biofilm formation was significantly suppressed in the algU mutant. Furthermore, hrpL also showed less expression in the algU mutant. These results indicate that AlgU plays a critical role in promoting Psg pathogenesis by regulating multiple virulence factors.

20.
Front Plant Sci ; 12: 726565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539719

RESUMO

Asian soybean rust (ASR) caused by Phakopsora pachyrhizi, an obligate biotrophic fungal pathogen, is the most devastating soybean production disease worldwide. Currently, timely fungicide application is the only means to control ASR in the field. We investigated cellulose nanofiber (CNF) application on ASR disease management. CNF-treated leaves showed reduced lesion number after P. pachyrhizi inoculation compared to control leaves, indicating that covering soybean leaves with CNF confers P. pachyrhizi resistance. We also demonstrated that formation of P. pachyrhizi appressoria, and also gene expression related to these formations, such as chitin synthases (CHSs), were significantly suppressed in CNF-treated soybean leaves compared to control leaves. Moreover, contact angle measurement revealed that CNF converts soybean leaf surface properties from hydrophobic to hydrophilic. These results suggest that CNF can change soybean leaf surface hydrophobicity, conferring resistance against P. pachyrhizi, based on the reduced expression of CHSs, as well as reduced formation of pre-infection structures. This is the first study to investigate CNF application to control field disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa