Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Chem Phys ; 157(9): 095101, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075729

RESUMO

We investigate the statistical properties of fluctuations in active systems that are governed by nonsymmetric responses. Both an underdamped Langevin system with an odd resistance tensor and an overdamped Langevin system with an odd elastic tensor are studied. For a system in thermal equilibrium, the time-correlation functions should satisfy time-reversal symmetry and the antisymmetric parts of the correlation functions should vanish. For the odd Langevin systems, however, we find that the antisymmetric parts of the time-correlation functions can exist and that they are proportional to either the odd resistance coefficient or the odd elastic constant. This means that the time-reversal invariance of the correlation functions is broken due to the presence of odd responses in active systems. Using the short-time asymptotic expressions of the time-correlation functions, one can estimate an odd elastic constant of an active material such as an enzyme or a motor protein.


Assuntos
Miosinas
2.
J Theor Biol ; 462: 311-320, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30465777

RESUMO

It is well established that the parasites of the genus Leishmania exhibit complex surface interactions with the sandfly vector midgut epithelium, but no prior study has considered the details of their hydrodynamics. Here, the boundary behaviours of motile Leishmania mexicana promastigotes are explored in a computational study using the boundary element method, with a model flagellar beating pattern that has been identified from digital videomicroscopy. In particular a simple flagellar kinematics is observed and quantified using image processing and mode identification techniques, suggesting a simple mechanical driver for the Leishmania beat. Phase plane analysis and long-time simulation of a range of Leishmania swimming scenarios demonstrate an absence of stable boundary motility for an idealised model promastigote, with behaviours ranging from boundary capture to deflection into the bulk both with and without surface forces between the swimmer and the boundary. Indeed, the inclusion of a short-range repulsive surface force results in the deflection of all surface-bound promastigotes, suggesting that the documented surface detachment of infective metacyclic promastigotes may be the result of their particular morphology and simple hydrodynamics. Further, simulation elucidates a remarkable morphology-dependent hydrodynamic mechanism of boundary approach, hypothesised to be the cause of the well-established phenomenon of tip-first epithelial attachment of Leishmania promastigotes to the sandfly vector midgut.


Assuntos
Hidrodinâmica , Leishmania mexicana/fisiologia , Psychodidae/parasitologia , Animais , Fenômenos Biofísicos , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida , Natação
3.
J Theor Biol ; 446: 1-10, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29462624

RESUMO

Remarkably, mammalian sperm maintain a substantive proportion of their progressive swimming speed within highly viscous fluids, including those of the female reproductive tract. Here, we analyse the digital microscopy of a human sperm swimming in a highly viscous, weakly elastic mucus analogue. We exploit principal component analysis to simplify its flagellar beat pattern, from which boundary element calculations are used to determine the time-dependent flow field around the sperm cell. The sperm flow field is further approximated in terms of regularised point forces, and estimates of the mechanical power consumption are determined, for comparison with analogous low viscosity media studies. This highlights extensive differences in the structure of the flows surrounding human sperm in different media, indicating how the cell-cell and cell-boundary hydrodynamic interactions significantly differ with the physical microenvironment. The regularised point force decomposition also provides cell-level information that may ultimately be incorporated into sperm population models. We further observe indications that the core feature in explaining the effectiveness of sperm swimming in high viscosity media is the loss of cell yawing, which is related with a greater density of regularised point force singularities along the axis of symmetry of the flagellar beat to represent the flow field. In turn this implicates a reduction of the wavelength of the distal beat pattern - and hence dynamical wavelength selection of the flagellar beat - as the dominant feature governing the effectiveness of sperm swimming in highly viscous media.


Assuntos
Modelos Biológicos , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Humanos , Masculino , Muco/metabolismo , Espermatozoides/citologia
4.
Phys Rev Lett ; 118(12): 124501, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28388208

RESUMO

The flagellar beat is extracted from human sperm digital imaging microscopy and used to determine the flow around the cell and its trajectory, via boundary element simulation. Comparison of the predicted cell trajectory with observation demonstrates that simulation can predict fine-scale sperm dynamics at the qualitative level. The flow field is also observed to reduce to a time-dependent summation of regularized Stokes flow singularities, approximated at leading order by a blinking force triplet. Such regularized singularity decompositions may be used to upscale cell level detail into population models of human sperm motility.


Assuntos
Simulação por Computador , Hidrodinâmica , Motilidade dos Espermatozoides , Fenômenos Biomecânicos , Flagelos , Humanos , Masculino , Modelos Biológicos
5.
J Theor Biol ; 399: 166-74, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27063642

RESUMO

Swimming performance of spermatozoa is an important index for the success of fertilization. For many years, numerous studies have reported the optimal swimming of flagellar organisms. Nevertheless, there is still a question as to which is optimal among planar, circular helical and ellipsoidal helical beating. In this paper, we use a genetic algorithm to investigate the beat pattern with the best swimming efficiency based on hydrodynamic dissipation and internal torque exertion. For the parameters considered, our results show that the planar beat is optimal for small heads and the helical flagellum is optimum for a larger heads, while the ellipsoidal beat is never optimal. Also, the genetic optimization reveals that the wavenumber and shape of wave envelope are relevant parameters, whereas the wave shape and head geometry have relatively minor effects on efficiency. The optimal beat with respect to the efficiency based on the internal torque exertion of an active elastic flagellum is characterized by a small-wavenumber and large-amplitude wave in a lower-viscosity medium. The obtained results on the optimal waveform are consistent with observations for planar waveforms, but in many respects, the results suggest the necessity of a detailed flagellar structure-fluid interaction to address whether real spermatozoa exhibit hydrodynamically efficient swimming. The evolutional optimization approach used in this study has distinguished biologically important parameters, and the methodology can potentially be applicable to various swimmers.


Assuntos
Algoritmos , Evolução Biológica , Flagelos/fisiologia , Hidrodinâmica , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Animais , Masculino , Modelos Biológicos
6.
J Theor Biol ; 389: 187-97, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26542943

RESUMO

For teleost fish fertilisation, sperm must proceed through a small opening on the egg surface, referred to as the micropyle. In this paper, we have used boundary element simulations to explore whether the hydrodynamic attraction between sperm and a fish egg can be a sperm guidance cue. Hydrodynamical egg-sperm interactions alone do not increase the chances of an egg encounter, nor do they induce surface swimming for virtual turbot fish sperm across smooth spheres with a diameter of 1mm, which is representative of a turbot fish egg. When a repulsive surface force between the virtual turbot sperm and the egg is introduced, as motivated by surface charge and van-der-Waals interactions for instance, we find that extended surface swimming of the virtual sperm across a model turbot egg occurs, but ultimately the sperm escapes from the egg. This is due to the small exit angle of the scattering associated with the initial sperm-egg interaction at the egg surface, leading to a weak drift away from the egg, in combination with a weak hydrodynamical attraction between both gametes, though the latter is not sufficient to prevent eventual escape. The resulting transience is not observed experimentally but is a detailed quantitative difference between theory and observation in that stable surface swimming is predicted for eggs with radii larger than about 1.8mm. Regardless, the extended sperm swimming trajectory across the egg constitutes a two-dimensional search for the micropyle and thus the egg is consistently predicted to provide a guidance cue for sperm once they are sufficiently close. In addition, the observation that the virtual turbot sperm swims stably next to a flat plane given repulsive surface interactions, but does not swim stably adjacent to a turbot-sized egg, which is extremely large by sperm-lengthscales, also highlights that the stability of sperm swimming near a boundary is very sensitive to geometry.


Assuntos
Linguados/fisiologia , Motilidade dos Espermatozoides , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Algoritmos , Animais , Fenômenos Biofísicos , Simulação por Computador , Feminino , Hidrodinâmica , Masculino , Modelos Teóricos , Movimento , Oscilometria
7.
J Theor Biol ; 360: 187-199, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25014474

RESUMO

The swimming stability of spermatozoa with a specified planar beat pattern in the presence of a no-slip flat surface is explored in a modelling study exploiting direct numerical computation via the boundary element method and dynamical systems theory. Parameter sweeps varying the sperm head morphology and flagellar beat pattern wavenumber are conducted and reveal that stable surface swimming is a robust hydrodynamical phenomenon across extensive parameter values, emphasising that diverse sperm will readily swim adjacent to a surface without detailed feedback. There is little sensitivity to the details of the sperm head morphologies considered and, in particular, cells with human sperm head geometries are well approximated by those with prolate ellipsoid heads. However, surface accumulation is predicted to be inhibited by changes associated with mammalian sperm hyperactivation and quantitative aspects, such as the accumulation height associated with surface swimming, are sensitive to the flagellar beat pattern wavenumber and even to the asymptotically small modelling approximations of slender body theory. In particular, the predicted sensitivity of the accumulation height of swimming sperm to the beat pattern wavenumber is sufficient to suggest the possibility that the limited focal depth of typical microscopy studies analysing flagellar patterns with a fixed focal plane may inadvertently bias the wavenumber of the sperm that are observed.


Assuntos
Movimento Celular/fisiologia , Forma Celular/fisiologia , Modelos Biológicos , Espermatozoides/citologia , Espermatozoides/fisiologia , Propriedades de Superfície , Biologia de Sistemas/métodos , Fenômenos Biomecânicos , Simulação por Computador , Flagelos/fisiologia , Humanos , Masculino , Microscopia/métodos
8.
Res Sq ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38746416

RESUMO

To fertilize eggs, sperm must pass through narrow, complex channels filled with viscoelastic fluids in the female reproductive tract. While it is known that the topography of the surfaces plays a role in guiding sperm movement, sperm have been thought of as swimmers, i.e., their motility comes solely from sperm interaction with the surrounding fluid, and therefore, the surfaces have no direct role in the motility mechanism itself. Here, we examined the role of solid surfaces in the movement of sperm in a highly viscoelastic medium. By visualizing the flagellum interaction with surfaces in a microfluidic device, we found that the flagellum stays close to the surface while the kinetic friction between the flagellum and the surface is in the direction of sperm movement, providing thrust. Additionally, the flow field generated by sperm suggests slippage between the viscoelastic fluid and the solid surface, deviating from the no-slip boundary typically used in standard fluid dynamics models. These observations point to hybrid motility mechanisms in sperm involving direct flagellum-surface interaction in addition to flagellum pushing the fluid. This finding signifies an evolutionary strategy of mammalian sperm crucial for their efficient migration through narrow, mucus-filled passages of the female reproductive tract.

9.
Sci Rep ; 14(1): 21841, 2024 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-39294257

RESUMO

To fertilize eggs, sperm must pass through narrow, complex channels filled with viscoelastic fluids in the female reproductive tract. While it is known that the topography of the surfaces plays a role in guiding sperm movement, sperm have been thought of as swimmers, i.e., their motility comes solely from sperm interaction with the surrounding fluid, and therefore, the surfaces have no direct role in the motility mechanism itself. Here, we examined the role of solid surfaces in the movement of sperm in a highly viscoelastic medium. By visualizing the flagellum interaction with surfaces in a microfluidic device, we found that the flagellum stays close to the surface while the kinetic friction between the flagellum and the surface is in the direction of sperm movement, providing thrust. Additionally, the flow field generated by sperm suggests slippage between the viscoelastic fluid and the solid surface, deviating from the no-slip boundary typically used in standard fluid dynamics models. These observations point to hybrid motility mechanisms in sperm involving direct flagellum-surface interaction in addition to flagellum pushing the fluid. This finding signifies an evolutionary strategy of mammalian sperm crucial for their efficient migration through narrow, mucus-filled passages of the female reproductive tract.


Assuntos
Motilidade dos Espermatozoides , Espermatozoides , Motilidade dos Espermatozoides/fisiologia , Masculino , Animais , Espermatozoides/fisiologia , Viscosidade , Elasticidade , Cauda do Espermatozoide/fisiologia , Feminino
10.
Front Cell Dev Biol ; 11: 1123446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123410

RESUMO

The behaviour of microscopic swimmers has previously been explored near large-scale confining geometries and in the presence of very small-scale surface roughness. Here, we consider an intermediate case of how a simple microswimmer, the tangential spherical squirmer, behaves adjacent to singly and doubly periodic sinusoidal surface topographies that spatially oscillate with an amplitude that is an order of magnitude less than the swimmer size and wavelengths that are also within an order of magnitude of this scale. The nearest neighbour regularised Stokeslet method is used for numerical explorations after validating its accuracy for a spherical tangential squirmer that swims stably near a flat surface. The same squirmer is then introduced to different surface topographies. The key governing factor in the resulting swimming behaviour is the size of the squirmer relative to the surface topography wavelength. For instance, directional guidance is not observed when the squirmer is much larger, or much smaller, than the surface topography wavelength. In contrast, once the squirmer size is on the scale of the topography wavelength, limited guidance is possible, often with local capture in the topography troughs. However, complex dynamics can also emerge, especially when the initial configuration is not close to alignment along topography troughs or above topography crests. In contrast to sensitivity in alignment and topography wavelength, reductions in the amplitude of the surface topography or variations in the shape of the periodic surface topography do not have extensive impacts on the squirmer behaviour. Our findings more generally highlight that the numerical framework provides an essential basis to elucidate how swimmers may be guided by surface topography.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa