Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(3): 036904, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307066

RESUMO

Acoustically induced dressed states of long-lived erbium ions in a crystal are demonstrated. These states are formed by rapid modulation of two-level systems via strain induced by surface acoustic waves whose frequencies exceed the optical linewidth of the ion ensemble. Multiple sidebands and the reduction of their intensities appearing near the surface are evidence of a strong interaction between the acoustic waves and the ions. This development allows for on-chip control of long-lived ions and paves the way to highly coherent hybrid quantum systems with telecom photons, acoustic phonons, and electrons.

2.
Opt Express ; 31(4): 6088-6098, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823874

RESUMO

We propose a method of supercontinuum light generation enhanced by multimode excitation in a precisely dispersion-engineered deuterated SiN (SiN:D) waveguide. Although a regularly designed SiN-based nonlinear optical waveguide exhibits anomalous dispersion with the fundamental and first-order multimode operation, the center-symmetric light pumping at the input edge has so far inhibited the full potential of the nonlinearity of SiN-based materials. On the basis of numerical analysis and simulation for the SiN:D waveguide, we intentionally applied spatial position offsets to excite the fundamental and higher-order modes to realize bandwidth broadening with flatness. Using this method, we achieved an SNR improvement of up to 18 dB at a wavelength of 0.6 µm with an offset of about 1 µm in the Y-axis direction and found that the contribution was related to the presence of dispersive waves due to the excitation of TE10, and TE01 modes.

3.
Opt Express ; 30(4): 5265-5273, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209493

RESUMO

We have achieved the simultaneous generation of a 2.6-octave-wide supercontinuum (SC) spectrum over 400-2500 nm and third-harmonic light solely by a dispersion-controlled silicon-nitride waveguide (SiNW). To increase the visible intensity of the SC light component, we fabricated low-loss 5-mm-long deuterated SiNWs with spot-size converters by low-temperature deposition. We succeeded in measuring the carrier-envelope-offset (CEO) signal with a 34-dB signal-to-noise ratio because this short deuterated SiNW provides a large temporal overlap between the f and 3f components. In addition, we have demonstrated this method of CEO locking at telecommunications wavelengths with f-3f self-referencing generated solely by the SiNW without the use of highly nonlinear fiber and an additional nonlinear crystal. Compared with the method of CEO locking with a highly nonlinear fiber and a standard f-2f self-referencing interferometer, this method is not only simple and compact but also stable.

4.
J Acoust Soc Am ; 150(2): 1514, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470317

RESUMO

A midfringe locked interferometer with differential detection is proposed for non-contact optical sound measurement, and the equivalent noise level of approximately 0 dB SPL/Hz is achieved. The noise level of the proposed method is 30 dB lower than that of a very recent laser Doppler vibrometer and close to that of a quarter-inch measurement microphone. The midfringe locking stabilizes the optical interferometer against slow environmental fluctuations and enables detection of the acoustic signal directly from optical intensity. The differential detection method eliminates laser intensity noise, which is a dominant noise source in optical interferometers. The noise level of the constructed system was approximately 10 dB above the optical shot-noise (the classical detection limit attributed to the quantum nature of light) at frequencies higher than 2 kHz. Further noise reduction by several available methods could lead to optical measurements that are more sensitive than measurements by microphones. In addition, the constructed interferometer is used to reconstruct sound fields generated by a half-inch laboratory standard microphone used as a transmitter. The proposed method will be a powerful tool for measuring small-amplitude sound fields where it has been challenging to use existing methods.

5.
Opt Express ; 28(7): 9186-9197, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225530

RESUMO

We report a cascaded optical fiber link which connects laboratories in RIKEN, the University of Tokyo, and NTT within a 100-km region using a transfer light at 1397 nm, a subharmonic of the Sr clock frequency. The multiple cascaded link employing several laser repeater stations benefits from a wide feedback bandwidth for fiber noise compensation, which allows constructing optical lattice clock networks based on the master-slave configuration. We developed the laser repeater stations based on planar lightwave circuits to significantly reduce the interferometer noise for improved link stability. We implemented a 240-km-long cascaded link in a UTokyo-NTT-UTokyo loop using light sent from RIKEN via a 30-km-long link. In environments with large fiber noise, the link instability is 3 × 10-16 at an averaging time of 1 s and reaches 1 × 10-18 at 2,600 s.

6.
Opt Express ; 27(21): 30262-30271, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684275

RESUMO

We evaluate the nonlinear coefficient of graphene-on-silicon waveguides through the coincidence measurement of photon-pairs generated via spontaneous four-wave mixing. We observed the temporal correlation of the photon-pairs from the waveguides over various transfer layouts of graphene sheets. A simple analysis of the experimental results using coupled-wave equations revealed that the atomically-thin graphene sheets enhanced the nonlinearity of silicon waveguides up to ten-fold. The results indicate that the purely χ (3)-based effective nonlinear refractive index of graphene is on the order of 10-13 m 2/W, and provide important insights for applications of graphene-based nonlinear optics in on-chip nanophotonics.

7.
Opt Express ; 22(2): 1629-35, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515168

RESUMO

We demonstrate that a 2f-to-3f self-referencing interferometer (SRI) becomes a useful tool for stabilizing a carrier-envelope offset frequency of an Er-doped fiber laser. A dual-pitch periodically poled lithium niobate (PPLN) ridge waveguide, consisting of two monolithically integrated segments with different quasi-phase matching pitch sizes, allows us to generate third-harmonic light with high efficiency. By using this device, we obtain a 45-dB signal-to-noise ratio in 100-kHz bandwidth of a heterodyne beat signal and instability of the in-loop f CEO of 8 × 10(-18) at 1 s of averaging time. This result is important for f CEO stabilization of a frequency comb, for which it is difficult to obtain a one-octave supercontinuum spectrum.

8.
Opt Express ; 21(24): 29186-94, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514470

RESUMO

We investigated phase-noise characteristics of both a phase/intensity-modulated laser with 25-GHz mode spacing and a mode-locked fiber laser with carrier-envelope-offset (CEO) locking. As the separation from the frequency of the continuous wave (CW) laser diode (LD) for a seed light source increases, the integrated phase noise of each comb mode of both the phase/intensity-modulated laser and supercontinuum light originating from it increases with the same slope as a function of mode number. The dependence of the integrated phase noise on mode number with the phase/intensity-modulated laser is much larger than with the mode-locked fiber laser of the CEO locking. However, the phase noise of the phase/intensity-modulated laser is extremely lower than that of the mode-locked fiber laser with CEO locking in the frequency region around the CW LD. The phase noise of the phase/intensity-modulated laser with 25-GHz mode spacing and that of the mode-locked fiber laser with the CEO locking could be estimated and were found to be almost the same at the wavelengths required in an f-to-2f self-referencing interferometer. Our experimental results indicate the possibility of achieving an offset-frequency-locked frequency comb with the phase/intensity-modulated laser.

9.
Sci Rep ; 13(1): 8750, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253824

RESUMO

A simpler and more accurate measurement of absolute optical frequencies (AOFs) is very important for optical communications and navigation systems. To date, an optical reference has been needed for measuring AOFs with twelve-digit accuracy because of the difficulty in measuring them directly. Here, we focus on an electro-optics-modulation comb that can bridge the vast frequency gap between photonics and electronics. We demonstrate an unprecedented method that can directly measure AOFs to an accuracy of twelve digits with an RF frequency counter by simply delivering a frequency-unknown laser into an optical phase modulator. This could open up a new horizon for optical-referenceless optical frequency metrology. Our method can also simultaneously achieve a 100-fold phase-noise reduction in a conventional signal generator. This corresponds to an increase in the transmission speed of wireless communications of by about seven times.

10.
Opt Express ; 19(23): 22402-9, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22109116

RESUMO

We report the first demonstration of continuous-wave laser diode based 100-fs-class pulse lasers operating at a gigahertz repetition rate without a mode-locking technique. We describe the performance of a 1-W, 120-fs optical pulse train at 1 GHz and a 1-W, 80-fs optical pulse train at 250 MHz by using a simple configuration. Sub-100-fs pulse durations are achieved by using a progressive expansion of the spectrum in the self-phase modulation process in an erbium-doped fibre amplifier. Our scheme can achieve continuously tunable repetition rate in the range of ± 20%, and develop powerful tools for use in nanomechanical systems and nanobiotechnology.


Assuntos
Lasers Semicondutores , Érbio/química , Vidro/química , Óptica e Fotônica , Fatores de Tempo
11.
Opt Express ; 16(7): 4706-12, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18542567

RESUMO

We demonstrate a carrier-envelope-offset (CEO)- locked frequency comb with 230-pJ fiber coupling pulse energy by using a passively mode-locked Er-fiber amplifier laser. For the generation of an octave-bandwidth spectrum in a highly nonlinear fiber and the second harmonic in a self-referenced interferometer with the lower pulse energy, we use a tellurite photonic crystal fiber and a direct-bonded quasi-phasematched LiNbO3 ridge waveguide, respectively. Our method is feasible for locking the CEO with a lower pulse energy to obtain a low-noise and highaccuracy optical frequency comb at telecommunications wavelengths.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Filtração/instrumentação , Lasers , Nióbio/química , Óxidos/química , Telecomunicações/instrumentação , Transferência de Energia , Estudos de Viabilidade , Filtração/métodos
12.
Sci Rep ; 7: 45520, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401940

RESUMO

Broadband on-chip optical frequency combs (OFCs) are important for expanding the functionality of photonic integrated circuits. Here, we demonstrate a huge local optical nonlinearity enhancement using graphene. A waveguide is decorated with graphene by precisely manipulating graphene's area and position. Our approach simultaneously achieves both an extremely efficient supercontinuum and ultra-short pulse generation. With our graphene-decorated silicon waveguide (G-SWG), we have achieved enhanced spectral broadening of femtosecond pump pulses, along with an eightfold increase in the output optical intensity at a wavelength approximately 200 nm shorter than that of the pump pulses. We also found that this huge nonlinearity works as a compressor that effectively compresses pulse width from 80 to 15.7 fs. Our results clearly show the potential for our G-SWG to greatly boost the speed and capacity of future communications with lower power consumption, and our method will further decrease the required pump laser power because it can be applied to decorate various kinds of waveguides with various two-dimensional materials.

13.
Appl Opt ; 43(6): 1396-403, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15008546

RESUMO

A hybrid tabletop (2 m x 3 m) terawatt chirped-pulse amplification Ti:sapphire-Nd:glass laser (1054 nm, 475 fs, 500 mJ, 9 x 10(17) W cm(-2)) has been developed for laser-matter experiments. An overall gain factor of 10(10) was achieved for the laser. The results of laser applications in the studies of soft-x-ray Ni-like Mo 18.9-nm lasing and of harmonic generation from solid surfaces are presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa