Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 192(1): 45, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31840189

RESUMO

The focus of this study is to measure ecological stress of Churni River based on the estimates of dissolved oxygen (DO), pH, biological oxygen demand (BOD), chemical oxygen demand (COD), nutrients imbalances of dissolved inorganic nitrogen or DIN (NO3- N and NO2- N) and dissolved inorganic phosphate or DIP (PO43-). The present water quality measured in terms of overall index of pollution (OIP), eutrophication index (EI), organic pollution (OPI) and water pollution indexes for ecological status (WPI) portrays that the river is polluted having a high concentration of BOD, COD, nutrients (DIP and DIN) and a very low concentration of DO. Fish community structure taken as most sensitive indicator of ecological stress of water pollution depicts that out of 44 species, 28 fish species (63.63%) comprising 20.0% planktivore (PL), 9.09% benthic feeder (BE), 18.18% omnivorous (OM) and 15.90% carnivorous (CA) at Majhdia and 21 fish species (47.72%) comprising 18.18% PL, 4.59% BE, 13.63% OM and 11.36% CA at Ranaghat have been disappeared. The present investigation has found that anthropogenic interventions like disposal of industrial effluents and agricultural run-off from on-bed and off bed land use are the main drivers of the pollution. Furthermore, natural forcing in the form of neotectonic movements and monsoon regimes has intensified the problem.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluição da Água/estatística & dados numéricos , Animais , Análise da Demanda Biológica de Oxigênio , Ecologia , Eutrofização , Peixes , Índia , Rios/química , Poluentes Químicos da Água/química , Poluição da Água/análise , Qualidade da Água
2.
Environ Sci Pollut Res Int ; 31(12): 18465-18484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347360

RESUMO

Assessing river water quality is crucial for human and ecological needs because of the deterioration of the river and escalated water pollution under the threats of anthropogenic activities. In order to assess river water quality, the Damodar River water was evaluated from the perspectives of spatio-temporal dynamics of ecological (organic pollution index or OPI and eutrophication index or EI), bacteriological (coliform count and comprehensive bathing water quality index or CBWQI), and overall water quality assessments (water quality index or WQI and comprehensive pollution index or CPI). The OPI reveals that 44.66% of water samples have heavy organic pollution; however, EI depicts that almost all water samples of Damodar River have severe eutrophication, especially in the pre- and post-monsoon seasons. Moreover, the fecal coliform count and CBWQI indicate the unsuitability of river water for bathing. The overall WQI portrays that 21.56%, 33.59%, and 22.47% of water samples have heavy pollution in pre-monsoon, monsoon, and post-monsoon, respectively. Moreover, 73.39% of water samples have low CPI indicating slight comprehensive pollution. This study also reveals that the pollution level in the Damodar River downstream of the Durgapur barrage is high among the other stations. The major reasons behind the severe contamination of Damodar River water are urban-industrial and agricultural effluents mixing into the river that lead to higher concentrations of BOD, DO, fecal coliform, COD, fluoride TSS, and turbidity in the river water. Thus, this study carries appreciated information on policy recommendations for the different stakeholders of the Damodar River basin including regional planners, agri-engineers, and ecological river engineers for sustainable river management.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Humanos , Monitoramento Ambiental , Rios , Poluição da Água/análise , Água Doce , Bactérias Gram-Negativas , Índia , Poluentes Químicos da Água/análise
3.
Sci Rep ; 14(1): 1265, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218993

RESUMO

Determining the degree of high groundwater arsenic (As) and fluoride (F-) risk is crucial for successful groundwater management and protection of public health, as elevated contamination in groundwater poses a risk to the environment and human health. It is a fact that several non-point sources of pollutants contaminate the groundwater of the multi-aquifers of the Ganges delta. This study used logistic regression (LR), random forest (RF) and artificial neural network (ANN) machine learning algorithm to evaluate groundwater vulnerability in the Holocene multi-layered aquifers of Ganges delta, which is part of the Indo-Bangladesh region. Fifteen hydro-chemical data were used for modelling purposes and sophisticated statistical tests were carried out to check the dataset regarding their dependent relationships. ANN performed best with an AUC of 0.902 in the validation dataset and prepared a groundwater vulnerability map accordingly. The spatial distribution of the vulnerability map indicates that eastern and some isolated south-eastern and central middle portions are very vulnerable in terms of As and F- concentration. The overall prediction demonstrates that 29% of the areal coverage of the Ganges delta is very vulnerable to As and F- contents. Finally, this study discusses major contamination categories, rising security issues, and problems related to groundwater quality globally. Henceforth, groundwater quality monitoring must be significantly improved to successfully detect and reduce hazards to groundwater from past, present, and future contamination.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água Subterrânea/química , Arsênio/análise , Fluoretos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38372926

RESUMO

The problem of desertification (DSF) is one of the most severe environmental disasters which influence the overall condition of the environment. In Rio de Janeiro Earth Summit on Environment and Development (1922), DSF is defined as arid, semi-arid, and dry sub-humid induced LD and that is adopted at the UNEP's Nairobi ad hoc meeting in 1977. It has been seen that there is no variability in the trend of long-term rainfall, but the change has been found in the variability of temperature (avg. temp. 0-5 °C). There is no proof that the air pollution brought on by CO2 and other warming gases is the cause of this rise, which seems to be partially caused by urbanization. The two types of driving factors in DSF-CC (climate change) along with anthropogenic influences-must be compared in order to work and take action to stop DSF from spreading. The proportional contributions of human activity and CC to DSF have been extensively evaluated in this work from "qualitative, semi-quantitative, and quantitative" perspectives. In this study, we have tried to connect the drives of desertification to desertification-induced migration due to loss of biodiversity and agriculture failure. The authors discovered that several of the issues from the earlier studies persisted. The policy-makers should follow the proper SLM (soil and land management) through using the land. The afforestation with social forestry and consciousness among the people can reduce the spreading of the desertification (Badapalli et al. 2023). The green wall is also playing an important role to reduce the desertification. For instance, it was clear that assessments were subjective; they could not be readily replicated, and they always relied on administrative areas rather than being taken and displayed in a continuous space. This research is trying to fulfill the mentioned research gap with the help of the existing literatures related to this field.

5.
Chemosphere ; 351: 141217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246495

RESUMO

Groundwater is an essential resource in the Sundarban regions of India and Bangladesh, but its quality is deteriorating due to anthropogenic impacts. However, the integrated factors affecting groundwater chemistry, source distribution, and health risk are poorly understood along the Indo-Bangla coastal border. The goal of this study is to assess groundwater chemistry, associated driving factors, source contributions, and potential non-carcinogenic health risks (PN-CHR) using unsupervised machine learning models such as a self-organizing map (SOM), positive matrix factorization (PMF), ion ratios, and Monte Carlo simulation. For the Sundarban part of Bangladesh, the SOM clustering approach yielded six clusters, while it yielded five for the Indian Sundarbans. The SOM results showed high correlations among Ca2+, Mg2+, and K+, indicating a common origin. In the Bangladesh Sundarbans, mixed water predominated in all clusters except for cluster 3, whereas in the Indian Sundarbans, Cl--Na+ and mixed water dominated in clusters 1 and 2, and both water types dominated the remaining clusters. Coupling of SOM, PMF, and ionic ratios identified rock weathering as a driving factor for groundwater chemistry. Clusters 1 and 3 were found to be influenced by mineral dissolution and geogenic inputs (overall contribution of 47.7%), while agricultural and industrial effluents dominated clusters 4 and 5 (contribution of 52.7%) in the Bangladesh Sundarbans. Industrial effluents and agricultural activities were associated with clusters 3, 4, and 5 (contributions of 29.5% and 25.4%, respectively) and geogenic sources (contributions of 23 and 22.1% in clusters 1 and 2) in Indian Sundarbans. The probabilistic health risk assessment showed that NO3- poses a higher PN-CHR risk to human health than F- and As, and that potential risk to children is more evident in the Bangladesh Sundarban area than in the Indian Sundarbans. Local authorities must take urgent action to control NO3- emissions in the Indo-Bangla Sundarbans region.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Monitoramento Ambiental/métodos , Aprendizado de Máquina não Supervisionado , Agricultura , Água , Poluentes Químicos da Água/análise , Qualidade da Água
6.
Artigo em Inglês | MEDLINE | ID: mdl-38795292

RESUMO

The decay of rivers and river water pollution are common problems worldwide. However, many works have been performed on decaying rivers in India, and the status of the water quality is still unknown in Jalangi River. To this end, the present study intends to examine the water quality of the Jalangi River to assess ecological status in both the spatial and seasonal dimensions. To depict the spatiality of ecological risks, 34 water samples were collected from the source to the sink of the Jalangi River with an interval of 10 km while 119 water samples were collected from a secondary source during 2012-2022 to capture the seasonal dynamics. In this work, the seasonality and spatiality of change in the river's water quality have been explored. This study used the eutrophication index (EI), organic pollution index (OPI), and overall index of pollution (OIP) to assess the ecological risk. The results illustrated that the values of OPI range from 7.17 to 588, and the values of EI exceed the standard of 1, indicating the critical situation of the ecological status of Jalangi River. The value of OIP ranges between 2.67 and 3.91 revealing the slightly polluted condition of the river water. The study signified the ecological status of the river is in a critical situation due to elevated concentrations of biological oxygen demand, chemical oxygen demand, and low concentrations of dissolved oxygen. The present study found that stagnation of water flow in the river, primarily driven by the eastward tilting of the Bengal basin, triggered water pollution and ecological risk. Moreover, anthropogenic interventions in the form of riverbed agriculture and the discharge of untreated sewage from urban areas are playing a crucial role in deteriorating the water quality of the river. This decay needs substantial attention from the various stakeholders in a participatory manner.

7.
Sci Rep ; 14(1): 4153, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378817

RESUMO

In recent years groundwater contamination through nitrate contamination has increased rapidly in the managementof water research. In our study, fourteen nitrate conditioning factors were used, and multi-collinearity analysis is done. Among all variables, pH is crucial and ranked one, with a value of 0.77, which controls the nitrate concentration in the coastal aquifer in South 24 Parganas. The second important factor is Cl-, the value of which is 0.71. Other factors like-As, F-, EC and Mg2+ ranked third, fourth and fifth position, and their value are 0.69, 0.69, 0.67 and 0.55, respectively. Due to contaminated water, people of this district are suffering from several diseases like kidney damage (around 60%), liver (about 40%), low pressure due to salinity, fever, and headache. The applied method is for other regions to determine the nitrate concentration predictions and for the justifiable alterationof some management strategies.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Nitratos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/análise , Índia , Água/análise
8.
MethodsX ; 10: 102042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845371

RESUMO

Complex channel planform especially the dynamics of the multi-thread river is empirically examined using the three major dimensions - bar growth, channel length and channel count. To this end, many indices have been proposed to deal with the complex channel response in the context of sediment-energy synergistic scenarios. The existing methods are primarily concerned with the linear or 1D nature of the channel and bar. The present study introduced the areal or 2-D nature of the channel and bar to capture a more realistic picture because, with same length, area of the bar may differ greatly. Therefore, we proposed four indices on channel braiding taking into consideration the area of the channel and bar. We tested our indices to the 28 reaches of the Damodar River, India that showed a significant correlation (∼80%) with the existing standard method. The major highlights of the methods are outlined as follows. •Four novel indices were proposed considering the linear and areal dimensions of the channel and bar.•Proposed indices focus on the unit-free measures with known limits enabling pragmatic comparison with self and other channels.•New methods were tested using field data implying a significant correlation with the existing methods.

9.
Environ Sci Pollut Res Int ; 30(55): 116498-116521, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35588033

RESUMO

Groundwater contamination has become a serious environmental threat throughout the world in the era of Anthropocene. Thus, the present study examined the groundwater quality for irrigation purposes based on the entropy method and heavy metal pollution indices. To compute the entropy-based groundwater irrigation quality index (EIWQI), physicochemical parameters such as pH, chloride (Cl-) and nitrate (NO3-), irrigation indices including electrical conductivity (EC), sodium absorption ratio (SAR), sodium percentage (%Na), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium hazard (MH), Kelley's ration (KR), permeability index (PI) and heavy metals such as manganese (Mn), iron (Fe), zinc (Zn) and arsenic (As) have been employed for the 37 sample wells of the Damodar fan delta (DFD), India, which is a semi-critical agriculture-dominated region. Shannon's entropy method has been used to assign the weights of the different parameters for constructing the EIWQI. The results portray a spatial variation of the irrigation water quality in the DFD. The EIWQI revealed that 27.03%, 59.46%, 8.11%, 2.7% and 2.7% of the sample wells, respectively, contain excellent, good, moderate, poor and very poor quality of irrigation water. On the other hand, heavy metal pollution indices (modified degree of contamination, pollution load index, Nemerow index and modified heavy metal pollution index) show that 15-20% of sample wells of the DFD are contaminated by heavy metal pollution. The pockets of pollution are concentrated in the southwestern, northeastern and central parts of the DFD. The study found that the spatial variation in groundwater quality is controlled by the higher sodium concentration, carbonate weathering and expansion of agricultural and urban-industrial areas.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Entropia , Poluentes Químicos da Água/análise , Metais Pesados/análise , Índia , Sódio
10.
Sci Rep ; 13(1): 11104, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423954

RESUMO

The elevated concentrations of heavy metals in soil considerably threaten ecological and human health. To this end, the present study assesses metals pollution and its threat to ecology from the mid-channel bar's (char) agricultural soil in the Damodar River basin, India. For this, the contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo), pollution index, and ecological risk index (RI) were measured on 60 soil samples at 30 stations (2 from each station, i.e., surface and sub-surface) in different parts of the mid-channel bar. The CF and EF indicate that both levels of char soil have low contamination and hence portray a higher potential for future enrichment by heavy metals. Moreover, Igeo portrays that soil samples are uncontaminated to moderately contaminated. Further, pollution indices indicate that all the samples (both levels) are unpolluted with a mean of 0.062 for surface soils and 0.048 for sub-surface soils. Both levels of the char have a low potentiality for ecological risk with an average RI of 0.20 for the surface soils and 0.19 for the sub-surface soils. Moreover, Technique for order preference by similarity to ideal solution (TOPSIS) indicates that the sub-surface soils have lower pollution than the surface soils. The geostatistical modeling reveals that the simple kriging technique was estimated as the most appropriate interpolation model. The present investigation exhibits that reduced heavy metal pollution is due to the sandy nature of soils and frequent flooding. However, the limited pollution is revealed due to the intensive agricultural practices on riverine chars. Therefore, this would be helpful to regional planners, agricultural engineers, and stakeholders in a basin area.

11.
Environ Sci Pollut Res Int ; 30(45): 101653-101668, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37656296

RESUMO

River water pollution and water-related health problems are common issues across the world. The present study aims to examine the Jalangi River's water quality to assess its suitability for drinking purposes and associated human health risks. The 34 water samples were collected from the source to the mouth of Jalangi River in 2022 to depict the spatial dynamics while another 119 water samples (2012-2022) were collected from a secondary source to portray the seasonal dynamics. Results indicate better water quality in the lower reach of the river in the monsoon and post-monsoon seasons. Principal component analysis reveals that K+, NO3-, and total alkalinity (TA) play a dominant role in controlling the water quality of the study region, while, CaCO3, Ca2+, and EC in the pre-monsoon, EC, TDS, Na+, and TA in the monsoon, and EC, TDS and TA in the post-monsoon controlled the water quality. The results of ANOVA reveal that BOD, Ca2+, and CaCO3 concentrations in water have significant spatial dynamics, whereas pH, BOD, DO, Cl-, SO42-, Na+, Mg2+, Ca2+, CaCO3, TDS, TA, and EC have seasonal dynamics (p < 0.05). The water quality index depicts that the Jalangi River's water quality ranged from 6.23 to 140.83, i.e., excellent to unsuitable for drinking purposes. Human health risk analysis shows that 32.35% of water samples have non-carcinogenic health risks for all three groups of people, i.e., adults, children, and infants while only 5.88% of water samples have carcinogenic health risks for adults and children. The gradual decay of the Jalangi River coupled with the disposal of urban and agricultural effluents induces river pollution that calls for substantial attention from the various stakeholders to restore the water quality.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Humanos , Qualidade da Água , Rios/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Índia , Água Subterrânea/química , Água Potável/análise
12.
Sci Total Environ ; 857(Pt 1): 159383, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36240937

RESUMO

The COVID-19 era has profoundly affected everyday human life, the environment, and freshwater ecosystems worldwide. Despite the numerous influences, a strict COVID-19 lockdown might improve the surface water quality and thus provide an unprecedented opportunity to restore the degraded freshwater resource. Therefore, we intend to investigate the spatiotemporal water quality, sources, and preliminary health risks of heavy metal(loid)s in the Karatoya River basin (KRB), a tropical urban river in Bangladesh. Seventy water samples were collected from 35 stations in KRB in 2019 and 2022 during the dry season. The results showed that the concentrations of Ni, Cu, Zn, Pb, Cd, and Cr were significantly reduced by 89.3-99.7 % during the post-lockdown period (p < 0.05). However, pH, Fe, Mn, and As concentrations increased due to the rise of urban waste and the usage of disinfectants during the post-lockdown phase. In the post-lockdown phase, the heavy metal pollution index, heavy metal evaluation index, and Nemerow's pollution index values lessened by 8.58 %, 42.86 %, and 22.86 %, respectively. Besides, the irrigation water quality indices also improved by 59 %-62 %. The total hazard index values increased by 24 % (children) and 22 % (adults) due to the rise in Mn and As concentrations during the lockdown. In comparison, total carcinogenic risk values were reduced by 54 % (children) and 53 % (adults) in the post-lockdown. We found no significant changes in river flow, rainfall, or land cover near the river from the pre to post-lockdown phase. The results of semivariogram models have demonstrated that most attributes have weak spatial dependence, indicating restricted industrial and agricultural effluents during the lockdown, significantly improving river water quality. Our study confirms that the lockdown provides a unique opportunity for the remarkable improvement of degraded freshwater resources. Long-term management policies and regular monitoring should reduce river pollution and clean surface water.


Assuntos
COVID-19 , Metais Pesados , Poluentes Químicos da Água , Criança , Adulto , Humanos , Rios , Ecossistema , COVID-19/epidemiologia , Bangladesh , Monitoramento Ambiental/métodos , Controle de Doenças Transmissíveis , Metais Pesados/análise , Qualidade da Água , Medição de Risco , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 30(24): 65848-65864, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093388

RESUMO

The present study evaluates the impact of the COVID-19 lockdown on the water quality of a tropical lake (East Kolkata Wetland or EKW, India) along with seasonal change using Landsat 8 and 9 images of the Google Earth Engine (GEE) cloud computing platform. The research focuses on detecting, monitoring, and predicting water quality in the EKW region using eight parameters-normalized suspended material index (NSMI), suspended particular matter (SPM), total phosphorus (TP), electrical conductivity (EC), chlorophyll-α, floating algae index (FAI), turbidity, Secchi disk depth (SDD), and two water quality indices such as Carlson tropic state index (CTSI) and entropy­weighted water quality index (EWQI). The results demonstrate that SPM, turbidity, EC, TP, and SDD improved while the FAI and chlorophyll-α increased during the lockdown period due to the stagnation of water as well as a reduction in industrial and anthropogenic pollution. Moreover, the prediction of EWQI using an artificial neural network indicates that the overall water quality will improve more if the lockdown period is sustained for another 3 years. The outcomes of the study will help the stakeholders develop effective regulations and strategies for the timely restoration of lake water quality.


Assuntos
COVID-19 , Qualidade da Água , Humanos , Lagos , Monitoramento Ambiental/métodos , Controle de Doenças Transmissíveis , Clorofila/análise , Redes Neurais de Computação , Fósforo/análise
14.
Sci Total Environ ; 876: 162851, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921864

RESUMO

Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are two major atmospheric pollutants that significantly threaten human health, the environment, and ecosystems worldwide. Despite this, only some studies have investigated the spatiotemporal hotspots of NO2 and SO2, their trends, production, and sources in Asia. Our study presents a literature review covering the production, trends, and sources of NO2 and SO2 across Asian countries (e.g., Bangladesh, China, India, Iran, Japan, Pakistan, Malaysia, Kuwait, and Nepal). Based on the findings of the review, NO2 and SO2 pollution are increasing due to industrial activity, fossil fuel burning, biomass burning, heavy traffic movement, electricity generation, and power plants. There is significant concern about health risks associated with NO2 and SO2 emissions in Bangladesh, China, India, Malaysia, and Iran, as they pay less attention to managing and controlling pollution. Even though the lack of quality datasets and adequate research in most Asian countries further complicates the management and control of NO2 and SO2 pollution. This study has NO2 and SO2 pollution scenarios, including hotspots, trends, sources, and their influences on Asian countries. This study highlights the existing research gaps and recommends new research on identifying integrated sources, their variations, spatiotemporal trends, emission characteristics, and pollution level. Finally, the present study suggests a framework for controlling and monitoring these two pollutants' emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Ecossistema , Dióxido de Enxofre/análise , Paquistão , Material Particulado/análise
15.
Sci Total Environ ; 887: 164164, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37187394

RESUMO

During the COVID-19 pandemic, people used personal protective equipment (PPE) to lessen the spread of the virus. The release of microplastics (MPs) from discarded PPE is a new threat to the long-term health of the environment and poses challenges that are not yet clear. PPE-derived MPs have been found in multi-environmental compartments, e.g., water, sediments, air, and soil across the Bay of Bengal (BoB). As COVID-19 spreads, healthcare facilities use more plastic PPE, polluting aquatic ecosystems. Excessive PPE use releases MPs into the ecosystem, which aquatic organisms ingest, distressing the food chain and possibly causing ongoing health problems in humans. Thus, post-COVID-19 sustainability depends on proper intervention strategies for PPE waste, which have received scholarly interest. Although many studies have investigated PPE-induced MPs pollution in the BoB countries (e.g., India, Bangladesh, Sri Lanka, and Myanmar), the ecotoxicity impacts, intervention strategies, and future challenges of PPE-derived waste have largely gone unnoticed. Our study presents a critical literature review covering the ecotoxicity impacts, intervention strategies, and future challenges across the BoB countries (e.g., India (162,034.45 tons), Bangladesh (67,996 tons), Sri Lanka (35,707.95 tons), and Myanmar (22,593.5 tons). The ecotoxicity impacts of PPE-derived MPs on human health and other environmental compartments are critically addressed. The review's findings infer a gap in the 5R (Reduce, Reuse, Recycle, Redesign, and Restructure) Strategy's implementation in the BoB coastal regions, hindering the achievement of UN SDG-12. Despite widespread research advancements in the BoB, many questions about PPE-derived MPs pollution from the perspective of the COVID-19 era still need to be answered. In response to the post-COVID-19 environmental remediation concerns, this study highlights the present research gaps and suggests new research directions considering the current MPs' research advancements on COVID-related PPE waste. Finally, the review suggests a framework for proper intervention strategies for reducing and monitoring PPE-derived MPs pollution in the BoB countries.


Assuntos
COVID-19 , Humanos , Ecotoxicologia , Ecossistema , Plásticos/toxicidade , Pandemias , Microplásticos , Equipamento de Proteção Individual
16.
Environ Sci Pollut Res Int ; 29(18): 26575-26598, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34855169

RESUMO

The present study exhibits a critical outlook on the poverty and livelihood vulnerability of the fisherman community in the context of persistent water pollution of the Churni River. The logistic regression model has identified eight factors influencing the poverty of the study area while the entropy weight method identifies the livelihood vulnerability of the fishermen. The livelihood vulnerability index of the upper stretch of the river is higher (0.65-0.67) compared to that of the lower stretch (0.46-0.57). The typical spatiality in poverty and livelihood vulnerability is triggered by the fragility of fishing livelihoods in the wake of lower concentrations of dissolved oxygen (DO), and higher BOD, COD, ammonia, nitrate and phosphate mainly due to industrial water pollution. For example, average DO ranges from 1.65 mg/l (upper stretch) to 2.50 mg/l (lower stretch) while the average BOD ranges from 5.44 mg/l (lower stretch) to 9.42 mg/l (upper stretch). This pollution induces acute ecological stress concerning declining fish diversity (from 41 to 16 fish species at the upper stretch and 41 to 23 fish species at the lower stretch during 1980-2018) as well as productivity of the existing fish species. Therefore, paralysed fishing economy and high dependency of the fishermen on the Churni River have forced them to revolve into the vicious cycle of poverty and enduring fragile livelihoods. Thus, the fishermen adopt few coping strategies like access to the nearby wetland for fishing, diversity in earning strategy and environmental movements against pollution to reduce the intensity of vulnerability. The present study would help the regional planners to frame the participatory plans for the sustainability of the riverine ecology and economy.


Assuntos
Caça , Rios , Animais , Índia , Pobreza , Poluição da Água
17.
Artigo em Inglês | MEDLINE | ID: mdl-35411311

RESUMO

Environmental flow is the minimum flow required in a fluvial system to maintain its ecological health and to promote socio-economic sustainability. The present work critically examines the concept of the environmental flow in the context of dams and development using a systematic methodology to find out the previous works published during the last 3 decades (1990-2020) in different search engines and websites. The study reviews that structural interventions in the form of dams, barrages, weirs, etc. impede the natural flow of the rivers. Moreover, other forms of development such as industrialization, urbanization, and expansion of modern agriculture also exacerbate the problems of environmental flow across the world, especially in monsoon Asia. The present case of the environmental flow for the Damodar River portrays that the construction of dams and barrages under the Damodar Valley Project have significantly altered the flow duration, flood frequency, and magnitude (high-frequency low magnitude events in the post-dam period), while urban-industrial growth in the basin has polluted the river water (e.g., lower dissolved oxygen and higher biological oxygen demand). This typical alteration in the flow characteristics and water quality has threatened aquatic organisms, especially fish diversity and community structure. This review will make the readers aware of the long-term result of dam-induced fluvial metamorphosis in the environment through the assessment of environmental flow, species diversity, flow fluctuation, and river pollution. The study may be useful for policy-making for ushering in the sustainable development pattern that will attract future researchers, planners, and stakeholders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa