Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775474

RESUMO

Accelerated aerobic glycolysis is a distinctive metabolic property of cancer cells that confers dependency on glucose for survival. However, the therapeutic strategies targeting this vulnerability are still inefficient and have unacceptable side effects in clinical trials. Therefore, developing biomarkers to predict therapeutic efficacy would be essential to improve the selective targeting of cancer cells. Here, we found that cell lines that are sensitive to glucose deprivation have high expression of cystine/glutamate antiporter xCT (also known as SLC7A11). We found that cystine uptake and glutamate export through xCT contributed to rapid NADPH depletion under glucose deprivation. This collapse of the redox system oxidized and inactivated AMP-activated protein kinase (AMPK), a major regulator of metabolic adaptation, resulting in a metabolic catastrophe and cell death. Although this phenomenon was prevented by pharmacological or genetic inhibition of xCT, overexpression of xCT sensitized resistant cancer cells to glucose deprivation. Taken together, these findings suggest a novel crosstalk between AMPK and xCT that links metabolism and signal transduction, and reveal a metabolic vulnerability to glucose deprivation in cancer cells expressing high levels of xCT.


Assuntos
Cistina , Neoplasias , Proteínas Quinases Ativadas por AMP/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Cistina/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Neoplasias/genética , Oxirredução
2.
Proc Natl Acad Sci U S A ; 116(24): 11754-11763, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138683

RESUMO

Human homolog of mouse double minute 2 (HDM2) is an oncogene frequently overexpressed in cancers with poor prognosis, but mechanisms of controlling its abundance remain elusive. In an unbiased biochemical search, we discovered Skp1-Cullin 1-FBXO22-ROC1 (SCFFBXO22) as the most dominating HDM2 E3 ubiquitin ligase from human proteome. The results of protein decay rate analysis, ubiquitination, siRNA-mediated silencing, and coimmunoprecipitation experiments support a hypothesis that FBXO22 targets cellular HDM2 for ubiquitin-dependent degradation. In human breast cancer cells, FBXO22 knockdown (KD) increased cell invasiveness, which was driven by elevated levels of HDM2. Moreover, mouse 4T1 breast tumor model studies revealed that FBXO22 KD led to a significant increase of breast tumor cell metastasis to the lung. Finally, low FBXO22 expression is correlated with worse survival and high HDM2 expression in human breast cancer. Altogether, these findings suggest that SCFFBXO22 targets HDM2 for degradation and possesses inhibitory effects against breast cancer tumor cell invasion and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Proteínas F-Box/metabolismo , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Processos Neoplásicos , RNA Interferente Pequeno/metabolismo , Transfecção/métodos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
3.
Br J Cancer ; 124(1): 299-312, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33144694

RESUMO

BACKGROUND: Mutant TP53 interacts with other proteins to produce gain-of-function properties that contribute to cancer metastasis. However, the underlying mechanisms are still not fully understood. METHODS: Using immunoprecipitation and proximity ligation assays, we evaluated breast cancer anti-estrogen resistance 1 (BCAR1) as a novel binding partner of TP53R273H, a TP53 mutant frequently found in human cancers. The biological functions of their binding were examined by the transwell invasion assay. Clinical outcome of patients was analysed based on TP53 status and BCAR1 expression using public database. RESULTS: We discovered a novel interaction between TP53R273H and BCAR1. We found that BCAR1 translocates from the cytoplasm into the nucleus and binds to TP53R273H in a manner dependent on SRC family kinases (SFKs), which are known to enhance metastasis. The expression of full-length TP53R273H, but not the BCAR1 binding-deficient mutant TP53R273HΔ102-207, promoted cancer cell invasion. Furthermore, among the patients with mutant TP53, high BCAR1 expression was associated with a poorer prognosis. CONCLUSIONS: The interaction between TP53R273H and BCAR1 plays an important role in enhancing cancer cell invasion. Thus, our study suggests a disruption of the TP53R273H-BCAR1 binding as a potential therapeutic approach for TP53R273H-harbouring cancer patients.


Assuntos
Proteína Substrato Associada a Crk/metabolismo , Invasividade Neoplásica/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação
4.
J Immunol ; 201(2): 451-464, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29848755

RESUMO

The ability of cells to induce the appropriate transcriptional response to inflammatory stimuli is crucial for the timely induction of host defense mechanisms. Although a role for tumor suppressor p14ARF (ARF) in the innate immune response was previously demonstrated, the underlying mechanism is still unclear. ARF is a potent upregulator of protein SUMOylation; however, no association of this function with the immune system has been made. In this study, we show the unique role of ARF in IFN-γ-induced immune response using human cell lines. Through a systematic search of proteins SUMOylated by ARF, we identified PIAS1, an inhibitor of IFN-activated transcription factor STAT1, as a novel ARF-binding partner and SUMOylation target. In response to IFN-γ treatment, ARF promoted PIAS1 SUMOylation to inhibit the ability of PIAS1 to attenuate IFN-γ response. Wild-type, but not ARF mutants unable to enhance PIAS1 SUMOylation, prevented the PIAS1-mediated inhibition of IFN-γ response. Conversely, the SUMO-deconjugase SENP1 deSUMOylated PIAS1 to reactivate PIAS1 that was inhibited by ARF. These findings suggest that PIAS1 function is negatively modulated by SUMO modification and that SUMOylation by ARF is required to inhibit PIAS1 activity and restore IFN-γ-induced transcription. In the presence of ARF, in which case PIAS1 is inhibited, depletion of PIAS1 did not have an additive effect on IFN-γ response, suggesting that ARF-mediated enhancement of IFN-γ response is mainly due to PIAS1 inhibition. Our findings reveal a novel function of ARF to inhibit PIAS1 by enhancing SUMOylation to promote the robust induction of IFN-γ response.


Assuntos
Imunidade Inata/imunologia , Interferon gama/imunologia , Proteínas Inibidoras de STAT Ativados/imunologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/imunologia , Sumoilação/imunologia , Proteína Supressora de Tumor p14ARF/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Inflamação/imunologia , Fator de Transcrição STAT1/imunologia , Transcrição Gênica/imunologia , Regulação para Cima/imunologia
5.
Int J Mol Sci ; 19(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518025

RESUMO

Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases.


Assuntos
Glucose/metabolismo , Glicólise , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Cancer Cell ; 12(4): 355-66, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17936560

RESUMO

It is believed that Mdm2 suppresses p53 in two ways: transcriptional inhibition by direct binding, and degradation via its E3 ligase activity. To study these functions physiologically, we generated mice bearing a single-residue substitution (C462A) abolishing the E3 function without affecting p53 binding. Unexpectedly, homozygous mutant mice died before E7.5, and deletion of p53 rescued the lethality. Furthermore, reintroducing a switchable p53 by crossing with p53ER(TAM) mice surprisingly demonstrated that the mutant Mdm2(C462A) was rapidly degraded in a manner indistinguishable from that of the wild-type Mdm2. Hence, our data indicate that (1) the Mdm2-p53 physical interaction, without Mdm2-mediated p53 ubiquitination, cannot control p53 activity sufficiently to allow early mouse embryonic development, and (2) Mdm2's E3 function is not required for Mdm2 degradation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Substituição de Aminoácidos , Animais , Células Cultivadas , Dano ao DNA , Regulação para Baixo , Embrião de Mamíferos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Raios gama , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Genótipo , Idade Gestacional , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/deficiência , Proteínas Proto-Oncogênicas c-mdm2/genética , Transcrição Gênica/efeitos da radiação , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
7.
J Biol Chem ; 286(32): 28343-56, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21659514

RESUMO

The transcription factor p53 plays a critical role in maintaining homeostasis as it relates to cellular growth, proliferation, and metabolism. In an effort to identify novel p53 target genes, a microarray approach was utilized to identify DHRS3 (also known as retSDR1) as a robust candidate gene. DHRS3 is a highly conserved member of the short chain alcohol dehydrogenase/reductase superfamily with a reported role in lipid and retinoid metabolism. Here, we demonstrate that DHRS3 is an endoplasmic reticulum (ER) protein that is shuttled to the ER via an N-terminal endoplasmic reticulum targeting signal. One important function of the ER is synthesis of neutral lipids that are packaged into lipid droplets whose biogenesis occurs from ER-derived membranes. DHRS3 is enriched at focal points of lipid droplet budding where it also localizes to the phospholipid monolayer of ER-derived lipid droplets. p53 promotes lipid droplet accumulation in a manner consistent with DHRS3 enrichment in the ER. As a p53 target gene, the observations of Dhrs3 location and potential function provide novel insight into an unexpected role for p53 in lipid droplet dynamics with implications in cancer cell metabolism and obesity.


Assuntos
Oxirredutases do Álcool/biossíntese , Retículo Endoplasmático/enzimologia , Membranas Intracelulares/enzimologia , Metabolismo dos Lipídeos , Neoplasias/metabolismo , Obesidade/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células 3T3-L1 , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Retículo Endoplasmático/genética , Células Hep G2 , Humanos , Camundongos , Neoplasias/genética , Obesidade/genética , Proteína Supressora de Tumor p53/genética
8.
Mol Cell Biol ; 26(12): 4675-89, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16738331

RESUMO

Small ubiquitin-related modifier (SUMO) proteins are conjugated to numerous polypeptides in cells, and attachment of SUMO plays important roles in regulating the activity, stability, and subcellular localization of modified proteins. SUMO modification of proteins is a dynamic and reversible process. A family of SUMO-specific proteases catalyzes the deconjugation of SUMO-modified proteins. Members of the Sentrin (also known as SUMO)-specific protease (SENP) family have been characterized with unique subcellular localizations. However, little is known about the functional significance of or the regulatory mechanism derived from the specific localizations of the SENPs. Here we identify a bipartite nuclear localization signal (NLS) and a CRM1-dependent nuclear export signal (NES) in the SUMO protease SENP2. Both the NLS and the NES are located in the nonhomologous domains of SENP2 and are not conserved among other members of the SENP family. Using a series of SENP2 mutants and a heterokaryon assay, we demonstrate that SENP2 shuttles between the nucleus and the cytoplasm and that the shuttling is blocked by mutations in the NES or by treating cells with leptomycin B. We show that SENP2 can be polyubiquitinated in vivo and degraded through proteolysis. Restricting SENP2 in the nucleus by mutations in the NES impairs its polyubiquitination, whereas a cytoplasm-localized SENP2 made by introducing mutations in the NLS can be efficiently polyubiquitinated, suggesting that SENP2 is ubiquitinated in the cytoplasm. Finally, treating cells with MG132 leads to accumulation of polyubiquitinated SENP2, indicating that SENP2 is degraded through the 26S proteolysis pathway. Thus, the function of SENP2 is regulated by both nucleocytoplasmic shuttling and polyubiquitin-mediated degradation.


Assuntos
Cisteína Endopeptidases/metabolismo , Ubiquitina/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , DNA Complementar/genética , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Nat Commun ; 10(1): 2820, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249297

RESUMO

Bats are unusual mammals, with the ability to fly, and long lifespans. In addition, bats have a low incidence of cancer, but the mechanisms underlying this phenomenon remain elusive. Here we discovered that bat cells are more resistant than human and mouse cells to DNA damage induced by genotoxic drugs. We found that bat cells accumulate less chemical than human and mouse cells, and efficient drug efflux mediated by the ABC transporter ABCB1 underlies this improved response to genotoxic reagents. Inhibition of ABCB1 triggers an accumulation of doxorubicin, DNA damage, and cell death. ABCB1 is expressed at higher levels in several cell lines and tissues derived from bats compared to humans. Furthermore, increased drug efflux and high expression of ABCB1 are conserved across multiple bat species. Our findings suggest that enhanced efflux protects bat cells from DNA damage induced by genotoxic compounds, which may contribute to their low cancer incidence.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Quirópteros/genética , Quirópteros/metabolismo , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Doxorrubicina/toxicidade , Humanos , Camundongos
10.
Science ; 366(6472): 1486-1492, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857479

RESUMO

Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.


Assuntos
Síndrome de Angelman/metabolismo , Canais de Cálcio Tipo N/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/fisiopatologia , Animais , Epilepsia/metabolismo , Humanos , Camundongos , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organoides , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Convulsões/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
11.
Biochem Biophys Res Commun ; 372(4): 826-30, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18519032

RESUMO

Id-1 is one of the four related helix-loop-helix Id proteins that act as inhibitors of the basic helix-loop-helix (bHLH) transcription factors that control cell differentiation, development and carcinogenesis. We previously found that Id-1 regulated the growth, differentiation, apoptosis and invasion of mouse mammary epithelial cells in culture. Using the techniques of immunohistochemistry and in situ hybridization, we now show that Id-1 gene expression is specifically detected in the epithelial cells of growing ductal structures during early pregnancy. Using adjacent sections, we determined that Id-1 was expressed in keratin 8/18 positive cells. We also demonstrated that the up-regulation of Id-2 during late pregnancy correlated with the down-regulation of Id-1. Using the yeast-two hybrid system, we identified the bHLH transcription factors, ITF-2A and ITF-2B, as the Id-interacting proteins. The levels of expression of these two splice variants did not change during the transition from growing ductal structures to differentiated alveoli. Therefore Id-1 and Id-2, but not the ubiquitous bHLH proteins, appear to represent the key factors whose expression is modulated during different stages of pregnancy in mouse mammary glands.


Assuntos
Proteína 1 Inibidora de Diferenciação/metabolismo , Proteína 2 Inibidora de Diferenciação/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Gravidez/metabolismo , Fatores de Transcrição TCF/metabolismo , Processamento Alternativo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sequências Hélice-Alça-Hélice , Proteína 1 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/genética , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Gravidez/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição TCF/genética , Fator de Transcrição 4 , Técnicas do Sistema de Duplo-Híbrido
12.
Sci Signal ; 11(512)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317521

RESUMO

Cancer cells increase glucose metabolism to support aerobic glycolysis. However, only some cancer cells are acutely sensitive to glucose withdrawal, and the underlying mechanism of this selective sensitivity is unclear. We showed that glucose deprivation initiates a cell death pathway in cancer cells that is dependent on the kinase RIPK1. Glucose withdrawal triggered rapid plasma membrane depolarization and an influx of extracellular calcium into the cell through the L-type calcium channel Cav1.3 (CACNA1D), followed by activation of the kinase CAMK1. CAMK1 and the demethylase PPME1 were required for the subsequent demethylation and inactivation of the catalytic subunit of the phosphatase PP2A (PP2Ac) and the phosphorylation of RIPK1. Plasma membrane depolarization, PP2Ac demethylation, and cell death were prevented by glucose and, unexpectedly, by its nonmetabolizable analog 2-deoxy-d-glucose (2-DG), a glycolytic inhibitor. These findings reveal a previously unknown function of glucose as a signaling molecule that protects cells from death induced by plasma membrane depolarization, independently of its role in glycolysis. Components of this cancer cell death pathway represent potential therapeutic targets against cancer.


Assuntos
Cálcio/metabolismo , Morte Celular , Desmetilação , Glucose/metabolismo , Glicólise , Neoplasias/patologia , Proteína Fosfatase 2/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Humanos , Neoplasias/metabolismo , Fosforilação , Proteína Fosfatase 2/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
13.
Mol Cell Biol ; 23(1): 389-401, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12482990

RESUMO

The polycomb protein Bmi-1 represses the INK4a locus, which encodes the tumor suppressors p16 and p14(ARF). Here we report that Bmi-1 is downregulated when WI-38 human fibroblasts undergo replicative senescence, but not quiescence, and extends replicative life span when overexpressed. Life span extension by Bmi-1 required the pRb, but not p53, tumor suppressor protein. Deletion analysis showed that the RING finger and helix-turn-helix domains of Bmi-1 were required for life span extension and suppression of p16. Furthermore, a RING finger deletion mutant exhibited dominant negative activity, inducing p16 and premature senescence. Interestingly, presenescent cultures of some, but not all, human fibroblasts contained growth-arrested cells expressing high levels of p16 and apparently arrested by a p53- and telomere-independent mechanism. Bmi-1 selectively extended the life span of these cultures. Low O(2) concentrations had no effect on p16 levels or life span extension by Bmi-1 but reduced expression of the p53 target, p21. We propose that some human fibroblast strains are more sensitive to stress-induced senescence and have both p16-dependent and p53/telomere-dependent pathways of senescence. Our data suggest that Bmi-1 extends the replicative life span of human fibroblasts by suppressing the p16-dependent senescence pathway.


Assuntos
Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Divisão Celular/genética , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Replicação do DNA , Fibroblastos/citologia , Sequências Hélice-Volta-Hélice , Humanos , Mutação , Proteínas Nucleares/genética , Oxigênio/metabolismo , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Mol Endocrinol ; 20(9): 2187-98, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16645041

RESUMO

The development of mammary glands relies on complicated signaling pathways that control cell proliferation, differentiation, and apoptotic events through transcriptional regulatory circuits. A key family of transcription factors used in mammary gland development is the helix-loop-helix/basic helix-loop-helix (HLH/bHLH) protein family. In this study, we identify Mist1 as a tissue-restricted Class II bHLH transcription factor expressed in lactating mammary glands. Mouse and human mammary glands accumulated Mist1 protein exclusively in secretory alveolar cells, and Mist1 transcripts were differentially expressed in mouse SCp2 cells induced to differentiate by addition of lactogenic hormones. Mist1 null (Mist1(KO)) lactating mammary glands were defective in normal lobuloalveolar organization, exhibiting shedding of cells into the alveolus lumen and premature activation of the signal transducer and activator of transcription 3 signaling pathway. These cells also failed to maintain expression of the gap junction proteins connexin26 and connexin32, leading to the loss of gap junctions. Our findings suggest that loss of Mist1 impairs the maintenance of the fully differentiated alveolar state and, for the first time, places Mist1 within the hierarchy of known HLH/bHLH proteins that control mammary epithelial cell development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Conexina 26 , Conexinas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/metabolismo
15.
Oncotarget ; 8(39): 64657-64669, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029384

RESUMO

The tumor suppressor p53 plays a pivotal role in numerous cellular responses as it regulates cell proliferation, metabolism, cellular growth, and autophagy. In order to identify novel p53 target genes, we utilized an unbiased microarray approach and identified Rap2B as a robust candidate, which belongs to the Ras-related GTP-binding protein superfamily and exhibits increased expression in various human cancers. We demonstrated that p53 increases the intracellular IP3 and Ca2+ levels and decreases the LC3 protein levels through its target gene Rap2B, suggesting that p53 can inhibit the autophagic response triggered by starvation via upregulation of the Rap2B-PLCε-IP3-Ca2+ pathway. As a confirmed target gene of p53, we believe that further investigating potential functions of Rap2B in autophagy and tumorigenesis will provide a novel strategy for cancer therapy.

16.
Cancer Res ; 64(21): 7886-92, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15520195

RESUMO

The sex steroid hormone progesterone (Pg) is critically involved in the development of the mammary gland, and it also is thought to play a role in breast cancer progression. However, the effect of Pg on malignant phenotypes is not fully understood in breast cancer. We previously reported that in Pg receptor (PR)-positive T47D breast cancer cells, Pg was able to counterbalance the stimulatory effect of estrogen or serum on proliferation and on expression level of Id-1, which generally stimulates cell proliferation and inhibits differentiation. Conversely, metastatic MDA-MB231 breast cancer cells lack PR and express high levels of Id-1 constitutively, and Pg showed no effect on Id expression, proliferation, and invasion in these cells. However, after introducing PR (either PR-A or PR-B) into MDA-MB231 cells, Pg inhibited the expression of Id-1 mRNA drastically. PR-transfected MDA-MB231 cells exhibited less proliferative activity after Pg treatment than parental or control MDA-MB231 cells, an effect which correlated well with reduction of Id-1 mRNA. This inhibitory effect on proliferation was accompanied by p21 up-regulation and c-myc down-regulation. Moreover, Pg-treated PR transfectants showed significant morphologic change, appearing more flattened and spread out than control ethanol-treated cells. Boyden chamber invasion assay revealed that PR-transfected MDA-MB231 cells also lost most of their invasive properties after Pg treatment. Zymographic analysis revealed that Pg drastically inhibited matrix metalloproteinase-9 (MMP-9) activity in cells transfected with either PR-A or PR-B. To determine whether Id-1 could act as a key mediator of the effects of Pg, we prepared cells transfected with Id-1 and PR. The morphologic change and p21 up-regulation still were observed after Pg treatment. However, c-myc down-regulation was not observed; the proliferative and invasive activities were mostly recovered; and MMP-9 down-regulation could not be detected anymore. From these observations, we conclude that either form of the PR is sufficient to reduce the malignant phenotypes on treatment with Pg and that Id-1 plays an important role as a mediator of the effects of Pg on breast cancer cell proliferation and invasion.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Progesterona/farmacologia , Receptores de Progesterona/fisiologia , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Proteína 1 Inibidora de Diferenciação , Metaloproteinase 9 da Matriz/genética , Invasividade Neoplásica , Metástase Neoplásica , Isoformas de Proteínas , RNA Mensageiro/análise , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transfecção
17.
Cancer Res ; 63(21): 7098-105, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14612502

RESUMO

Id proteins are inhibitors of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. We have shown that ectopic expression of Id-1 in murine mammary epithelial cells resulted in loss of differentiation and gain of invasive and proliferative abilities. Moreover, Id-1 was highly expressed in aggressive breast cancer cells in culture and in biopsies from infiltrating carcinomas. In contrast to Id-1, we found that, in vitro and in vivo, Id-2 mRNA and protein were up-regulated as mammary epithelial cells lost proliferative capacity and initiated differentiation. We further determined that this up-regulation of Id-2 was a necessary step toward a fully differentiated phenotype in breast cells. Here we show that one of the components of the extracellular matrix network, laminin, is responsible for the increase in Id-2 expression during differentiation. We also show that Id-2 expression is inversely correlated with the rate of proliferation in murine mammary epithelial cells and that Id-2 is expressed at a higher level in differentiated human breast cancer cells in comparison with very aggressive and metastatic cells. When reintroduced in aggressive breast cancer cells, Id-2 is able to reduce their proliferative and invasive phenotypes and decrease their level of matrix metalloproteinase 9 secretion as well as increase syndecan-1 expression. Moreover, little Id-2 protein expression is detectable in human biopsies from aggressive and invasive carcinomas in comparison with in situ carcinomas. In conclusion, Id-2 expression not only follows a pattern opposite to that of Id-1 during mammary gland development and breast cancer progression but also appears to act as an important protein for the maintenance of a differentiated and noninvasive phenotype in normal and transformed breast cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Repressoras , Fatores de Transcrição/fisiologia , Animais , Biópsia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Proteína 2 Inibidora de Diferenciação , Laminina/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Prognóstico , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
18.
Cancer Res ; 64(17): 6152-9, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15342399

RESUMO

Alterations in the basement membrane receptor dystroglycan (DG) are evident in muscular dystrophies and carcinoma cells and characterized by a selective loss or modification of the extracellular alpha-DG subunit. Defects in posttranslational modifications of DG have been identified in some muscular dystrophies, but the underlying modifications in carcinoma cells have not yet been defined. We reveal here multiple posttranslational modifications that modulate the composition and function of DG in normal epithelial cells and carcinoma cells. We show that alpha-DG is shed from the cell surface of normal and tumorigenic epithelial cells through a proteolytic mechanism that does not require direct cleavage of either alpha- or beta-DG. Shedding is dependent on metalloprotease activity and the proprotein convertase furin. Surprisingly, furin is also found to directly process alpha-DG as a proprotein substrate, changing the existing model of DG composition. We also show that the glycosylation of alpha-DG is altered in invasive carcinoma cells, and this modification causes complete loss of laminin binding properties. Together, these data elucidate several novel events regulating the functional composition of DG and reveal defects that arise during cancer progression, providing direction for efforts to restore this link with the basement membrane in carcinoma cells.


Assuntos
Carcinoma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Furina/metabolismo , Glicoproteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Sequência de Aminoácidos , Animais , Membrana Basal/enzimologia , Membrana Basal/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma/enzimologia , Carcinoma/patologia , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Distroglicanas , Glicosilação , Humanos , Camundongos , Dados de Sequência Molecular , Invasividade Neoplásica , Processamento de Proteína Pós-Traducional , Xenopus laevis
19.
Sci Rep ; 6: 28112, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346849

RESUMO

The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Epigênese Genética , Técnica Indireta de Fluorescência para Anticorpo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Metilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estabilidade Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
20.
Elife ; 5: e07101, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26956429

RESUMO

Genetic alterations which impair the function of the TP53 signaling pathway in TP53 wild-type human tumors remain elusive. To identify new components of this pathway, we performed a screen for genes whose loss-of-function debilitated TP53 signaling and enabled oncogenic transformation of human mammary epithelial cells. We identified transglutaminase 2 (TGM2) as a putative tumor suppressor in the TP53 pathway. TGM2 suppressed colony formation in soft agar and tumor formation in a xenograft mouse model. The depletion of growth supplements induced both TGM2 expression and autophagy in a TP53-dependent manner, and TGM2 promoted autophagic flux by enhancing autophagic protein degradation and autolysosome clearance. Reduced expression of both CDKN1A, which regulates the cell cycle downstream of TP53, and TGM2 synergized to promote oncogenic transformation. Our findings suggest that TGM2-mediated autophagy and CDKN1A-mediated cell cycle arrest are two important barriers in the TP53 pathway that prevent oncogenic transformation.


Assuntos
Autofagia , Transformação Celular Neoplásica , Células Epiteliais/enzimologia , Células Epiteliais/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ligação ao GTP/genética , Testes Genéticos , Xenoenxertos , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa