Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Microbiol Immunol ; 67(3): 166-170, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564197

RESUMO

Global efforts are underway to eliminate measles and rubella, and active viral surveillance is the key to achieving this goal. In addition, the World Health Organization announced guidelines for handling materials potentially infectious for poliovirus (PV) to minimize the risk of PV reintroduction and to achieve PV eradication. To support global efforts, we established new PV-non-susceptible cell lines that are useful for the isolation of measles virus (MeV) and rubella virus (RuV) (Vero ΔPVR1/2 hSLAM+). In the cell lines, MeV and RuV replicated efficiently, with no concern regarding PV replication.


Assuntos
Sarampo , Poliovirus , Rubéola (Sarampo Alemão) , Animais , Chlorocebus aethiops , Humanos , Células Vero , Sarampo/epidemiologia , Vírus do Sarampo , Receptores Virais/genética , Vírus da Rubéola
2.
J Infect Chemother ; 28(2): 347-351, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34774431

RESUMO

Genetic testing using reverse transcriptase real-time polymerase chain reaction (rRT-PCR) is the mainstay of diagnosis of COVID-19. However, it has not been fully investigated whether infectious viruses are contained in SARS-CoV-2 genome-positive specimens examined using the rRT-PCR test. In this study, we examined the correlation between the threshold Cycle (Ct) value obtained from the rRT-PCR test and virus isolation in cultured cells, using 533 consecutive clinical specimens of COVID-19 patients. The virus was isolated from specimens with a Ct value of less than 30 cycles, and the lower the Ct value, the more efficient the isolation rate. A cytopathic effect due to herpes simplex virus type 1 contamination was observed in one sample with a Ct value of 35 cycles. In a comparison of VeroE6/TMPRSS2 cells and VeroE6 cells used for virus isolation, VeroE6/TMPRSS2 cells isolated the virus 1.7 times more efficiently than VeroE6 cells. There was no significant difference between the two cells in the mean Ct value of the detectable sample. In conclusion, Lower Ct values in the PCR test were associated with higher virus isolation rates, and VeroE6/TMPRSS2 cells were able to isolate viruses more efficiently than VeroE6 cells.


Assuntos
COVID-19 , SARS-CoV-2 , Linhagem Celular , Testes Diagnósticos de Rotina , Humanos , Reação em Cadeia da Polimerase em Tempo Real
3.
Environ Sci Technol ; 55(5): 3156-3164, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33583178

RESUMO

The disinfection susceptibilities of viruses vary even among variants, yet the inactivation efficiency of a certain virus genotype, species, or genus was determined based on the susceptibility of its laboratory strain. The objectives were to evaluate the variability in susceptibilities to free chlorine, UV254, and ozone among 13 variants of coxsackievirus B5 (CVB5) and develop the model allowing for predicting the overall inactivation of heterogeneous CVB5. Our results showed that the susceptibilities differed by up to 3.4-fold, 1.3-fold, and 1.8-fold in free chlorine, UV254, and ozone, respectively. CVB5 in genogroup B exhibited significantly lower susceptibility to free chlorine and ozone than genogroup A, where the laboratory strain, Faulkner, belongs. The capsid protein in genogroup B contained a lower number of sulfur-containing amino acids, readily reactive to oxidants. We reformulated the Chick-Watson model by incorporating the probability distributions of inactivation rate constants to capture the heterogeneity. This expanded Chick-Watson model indicated that up to 4.2-fold larger free chlorine CT is required to achieve 6-log inactivation of CVB5 than the prediction by the Faulkner strain. Therefore, it is recommended to incorporate the variation in disinfection susceptibilities for predicting the overall inactivation of a certain type of viruses.


Assuntos
Ozônio , Vírus , Purificação da Água , Cloro , Desinfecção , Enterovirus Humano B
4.
Pediatr Int ; 59(5): 627-632, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28402006

RESUMO

Herein we describe the case of a 1-month-old boy with acute viral myocarditis, who presented with two kinds of paroxysmal supraventricular tachycardia, and who was cured after medical treatment. He was brought to the emergency room with poor feeding due to fever. On the third day of hospitalization, a narrow QRS tachycardia (180-200 beats/min) was detected. Echocardiography showed a high echoic area at the atrial septum around the atrioventricular node. The patient was clinically diagnosed with acute myocarditis. The narrow QRS tachycardia was diagnosed as incessant junctional ectopic tachycardia. The patient was treated with propranolol and landiolol. The frequency of the tachycardia decreased, but a different narrow QRS tachycardia was detected on the 15th day of hospitalization on electrocardiogram (220 beats/min), which was ascribed to atrioventricular nodal re-entrant tachycardia. Atenolol was effective for the tachycardia. At 2 years follow up, cardiac function was normal and tachycardia had not recurred.


Assuntos
Infecções por Coxsackievirus/diagnóstico , Enterovirus Humano B/isolamento & purificação , Miocardite/diagnóstico , Taquicardia Supraventricular/etiologia , Infecções por Coxsackievirus/complicações , Humanos , Lactente , Masculino , Miocardite/complicações , Miocardite/virologia , Taquicardia Ectópica de Junção/diagnóstico , Taquicardia Ectópica de Junção/etiologia , Taquicardia Supraventricular/diagnóstico
5.
Jpn J Infect Dis ; 77(2): 75-82, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37914293

RESUMO

We studied 226 patients in Toyama Prefecture who were notified of COVID-19 during the first wave between March 30 and May 18, 2020. Of the 226 patients, 22 (9.7%) died, most (95%) of whom were aged ≥65 years. A large cluster comprising 59 patients (41 residents and 18 staff members) was identified in a nursing home on April 17. No deaths occurred among staff members; however, 12 of the 41 residents (29%) died. Although the threshold cycle (Ct) values were significantly lower in the 20-64 and ≥65 years age groups than in the <20 years age group, no correlation was found between the Ct values and severity, fatal outcome, or secondary infection. The haplotype network of 145 SARS-CoV-2 isolates (64%) from 226 patients was analyzed. The viral genomes of the case groups differed by less than five nucleotide bases. These data suggest that the SARS-CoV-2 strains, which were initially introduced into Toyama Prefecture in late March and early April 2020, and their closely related strains, identified as lineage B.1.1, circulated during the first wave. The reduced inter-prefectural mobility of local residents may support the lack of strain diversity in SARS-CoV-2 during the first wave of the state of emergency.


Assuntos
COVID-19 , Humanos , Adulto Jovem , Adulto , COVID-19/epidemiologia , SARS-CoV-2/genética , Japão/epidemiologia , Teste para COVID-19 , Casas de Saúde
6.
Sci Rep ; 13(1): 8893, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264051

RESUMO

It has been revealed that SARS-CoV-2 can be efficiently isolated from clinical specimens such as nasal/nasopharyngeal swabs or saliva in cultured cells. In this study, we examined the efficiency of viral isolation including SARS-CoV-2 mutant strains between nasal/nasopharyngeal swab or saliva specimens. Furthermore, we also examined the comparison of viral isolation rates by sample species using simulated specimens for COVID-19. As a result, it was found that the isolation efficiency of SARS-CoV-2 in the saliva specimens was significantly lower than that in the nasal/nasopharyngeal swab specimens. In order to determine which component of saliva is responsible for the lower isolation rate of saliva specimens, we tested the abilities of lactoferrin, amylase, cathelicidin, and mucin, which are considered to be abundant in saliva, to inhibit the infection of SARS-CoV-2 pseudotyped viruses (SARS-CoV-2pv). Lactoferrin and amylase were found to inhibit SARS-CoV-2pv infection. In conclusion, even if the same number of viral genome copies was detected by the real-time RT-PCR test, infection of SARS-CoV-2 present in saliva is thought to be inhibited by inhibitory factors such as lactoferrin and amylase, compared to nasal/nasopharyngeal swab specimens.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Saliva , Lactoferrina , Teste para COVID-19 , Técnicas de Laboratório Clínico , Nasofaringe , Técnicas de Cultura de Células , Manejo de Espécimes
7.
Sci Rep ; 13(1): 11632, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468582

RESUMO

SARS-CoV-2 enters host cells through the angiotensin converting enzyme 2 (ACE2) receptor and/or transmembrane protease, serine 2 (TMPRSS2). In this study, we investigated whether proteases increased SARS-CoV-2 infectivity using pseudotyped viruses and clinical specimens from patients with COVID-19. First, we investigated how trypsin increased infectivity using the pseudotyped virus. Our findings revealed that trypsin increased infectivity after the virus was adsorbed on the cells, but no increase in infectivity was observed when the virus was treated with trypsin. We examined the effect of trypsin on SARS-CoV-2 infection in clinical specimens and found that the infectivity of the SARS-CoV-2 delta variant increased 36,000-fold after trypsin treatment. By contrast, the infectivity of SARS-CoV-2 omicron variant increased to less than 20-fold in the clinical specimens. Finally, using five clinical specimens containing delta variants, enhancement of viral infectivity was evaluated in the presence of the culture supernatant of several anaerobic bacteria. As a result, viral infectivities of all the clinical specimens containing culture supernatants of Fusobacterium necrophorum were significantly increased from several- to tenfold. Because SARS-CoV-2 infectivity increases in the oral cavity, which may contain anaerobic bacteria, keeping the oral cavities clean may help prevent SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Tripsina , Peptidil Dipeptidase A , Peptídeo Hidrolases
8.
Viruses ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005905

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infection caused by the SFTS virus (SFTSV), with a high fatality rate of approximately 30% in humans. In recent years, cases of contact infection with SFTSV via bodily fluids of infected dogs and cats have been reported. In this study, clinical and virological analyses were performed in two dogs in which SFTSV infection was confirmed for the first time in the Toyama prefecture. Both dogs recovered; however, one was severely ill and the other mildly ill. The amount of the SFTSV gene was reduced to almost similar levels in both dogs. In the dogs' sera, the SFTSV gene was detected at a low level but fell below the detection limit approximately 2 weeks after onset. Notably, the SFTSV gene was detected at levels several thousand times higher in urine than in other specimens from both dogs. Furthermore, the gene was detected in the urine for a long period of >2 months. The clinical signs disappeared on days 1 or 6 after onset, but infectious SFTSV was detected in the urine up to 3 weeks later. Therefore, it is necessary to be careful about contact with bodily fluids, especially urine, even after symptoms have disappeared.


Assuntos
Infecções por Bunyaviridae , Doenças do Gato , Doenças do Cão , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Animais , Cães , Gatos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Febre Grave com Síndrome de Trombocitopenia/veterinária , Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/veterinária , Doenças do Cão/diagnóstico , Phlebovirus/genética
9.
Int J Infect Dis ; 136: 146-148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722481

RESUMO

We present the clinical course of a 72-year-old female with COVID-19 and a history of hematologic stem cell transplantation for acute myeloid leukemia. We performed serial analyses of viral load and whole-genome amplification. The virus growth was evaluated by a real-time polymerase chain reaction assay. Neutralizing activity was measured using a chemiluminescence reduction neutralizing test of SARS-CoV-2 pseudotyped virus. After neutralizing antibody therapy, the cycle threshold value of viral genome was 28. Viruses were no longer isolated in a cell culture. K129R, V722I, and V987F of amino acid mutation in spike protein region were identified, although they soon disappeared. Four months after symptom onset, E340K, K356R, R346T, and E484V mutations appeared and persisted. The viability of the virus decreased over time, with the virus at day 145 having a cycle threshold value of 24 and positive virus isolation, but at a slower growth rate. Neutralizing antibody activity for Omicron BA.5 finally appeared about 4 months after infection. In immunocompromised patients, persistent infection with amino acid mutations can occur without neutralizing antibodies. However, the production of neutralizing antibodies reduces the growth rate of the SARS-CoV-2. Moreover, infection control requires attention to viral dynamics and evolution under different conditions.


Assuntos
COVID-19 , Feminino , Humanos , Idoso , SARS-CoV-2/genética , Hospedeiro Imunocomprometido , Aminoácidos , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Vaccine ; 41(13): 2234-2242, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36858871

RESUMO

The sustained epidemic of Omicron subvariants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide concern, and older adults are at high risk. We conducted a prospective cohort study to assess the immunogenicity of COVID-19 mRNA vaccines (BNT162b2 or mRNA-1273) in nursing home residents and staff between May 2021 and December 2022. A total of 335 SARS-CoV-2 naïve individuals, including 141 residents (median age: 88 years) and 194 staff (median age: 44 years) participated. Receptor-binding domain (RBD) and nucleocapsid (N) protein IgG and neutralizing titer (NT) against the Wuhan strain, Alpha and Delta variants, and Omicron BA.1 and BA.5 subvariants were measured in serum samples drawn from participants after the second and third doses of mRNA vaccine using SARS-CoV-2 pseudotyped virus. Breakthrough infection (BTI) was confirmed by a notification of COVID-19 or a positive anti-N IgG result in serum after mRNA vaccination. Fifty-one participants experienced SARS-CoV-2 BTI during the study period. The RBD IgG and NTs against Omicron BA.1 and BA.5 were markedly increased in SARS CoV-2 naïve participants 2 months after the third dose of mRNA vaccine, compared to those 5 months after the second dose, and declined 5 months after the third dose. The decline in RBD IgG and NT against Omicron BA.1 and BA.5 in SARS-CoV-2 naïve participants after the second and the third dose was particularly marked in those aged ≥ 80 years. BTIs during the BA.5 epidemic period, which occurred between 2 and 5 months after the third dose, induced a robust NT against BA.5 even five months after the booster dose vaccination. Further studies are required to assess the sustainability of NTs elicited by Omicron-containing bivalent mRNA booster vaccine in older adults.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , População do Leste Asiático , Imunoglobulina G , Casas de Saúde , Estudos Prospectivos , SARS-CoV-2
11.
Jpn J Infect Dis ; 76(5): 319-322, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37258174

RESUMO

Breakthrough infection (BI) after coronavirus disease 2019 (COVID-19) vaccination has increased owing to the emergence of novel SARS-CoV-2 variants. In this study, we analyzed the epidemiological information and possession status of neutralizing antibodies in patients with BI using SARS-CoV-2 pseudotyped viruses. Analysis of 44 specimens from patients diagnosed with COVID-19 after two or more vaccinations showed high inhibition of infection by 90% or more against the Wuhan strain and the Alpha and Delta variants of pseudotyped viruses in 40 specimens. In contrast, almost no neutralizing activity was observed against the Omicron BA.1 variant. Many patients without neutralizing activity or BI were immunosuppressed. The results of this study show that contact with an infected person can result in BI, even when there are sufficient neutralizing antibodies in the blood. Thus, sufficient precautions must be taken to prevent infection even after vaccination.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Japão/epidemiologia , Anticorpos Neutralizantes , Vacinação , Anticorpos Antivirais
12.
Sci Rep ; 12(1): 16074, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167892

RESUMO

To monitor vulnerability of countries to poliovirus (PV) outbreaks, serosurveillance of anti-PV neutralization antibody is conducted by conventional PV neutralization test (cPNT), which uses live PV strains. We previously developed a pseudovirus PV neutralization test (pPNT) as an alternative to cPNT, which uses PV pseudovirus that expresses luciferase as a reporter in the infection without producing infectious PV. In the present study, we established a high-throughput pPNT (HTpPNT) for a large-scale serosurveillance. The HTpPNT system was evaluated with 600 human serum samples obtained from a broad range of age groups of healthy volunteers (ages of 0-89 years). HTpPNT showed high correlation with cPNT (R2 for anti-type 1, 2, and 3 PV neutralization antibody titres are 0.90, 0.84, and 0.90, respectively). By using HTpPNT, we analyzed relative neutralizing antibody titre of the sera against a type 1 PV wild-type strain (Mahoney strain) to that against the type 1 Sabin strain. As a result, a correlation between the age (≥ 60 years) and the relative neutralizing antibody titre was observed (n = 15-16, P = 0.0000023-0.041), while the types of PV vaccine (i.e., oral PV vaccine and Sabin strain-based IPV) had no effect. HTpPNT would serve as a useful alternative to cPNT in a large-scale serosurveillance.


Assuntos
Poliomielite , Poliovirus , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Luciferases , Pessoa de Meia-Idade , Testes de Neutralização , Vacina Antipólio Oral
13.
Water Res ; 220: 118712, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691190

RESUMO

Inactivation kinetics of enterovirus by disinfection is often studied using a single laboratory strain of a given genotype. Environmental variants of enterovirus are genetically distinct from the corresponding laboratory strain, yet it is poorly understood how these genetic differences affect inactivation. Here we evaluated the inactivation kinetics of nine coxsackievirus B3 (CVB3), ten coxsackievirus B4 (CVB4), and two echovirus 11 (E11) variants by free chlorine and ultraviolet irradiation (UV). The inactivation kinetics by free chlorine were genotype- (i.e., susceptibility: CVB5 < CVB3 ≈ CVB4 < E11) and genogroup-dependent and exhibited up to 15-fold difference among the tested viruses. In contrast, only minor (up to 1.3-fold) differences were observed in the UV inactivation kinetics. The differences in variability between the two disinfectants could be rationalized by their respective inactivation mechanisms: inactivation by UV mainly depends on the genomic size and composition, which was similar for all viruses tested, whereas free chlorine targets the viral capsid protein, which exhibited critical differences between genogroups and genotypes. Finally, we integrated the observed variability in inactivation rate constants into an expanded Chick-Watson model to estimate the overall inactivation of an enterovirus consortium. The results highlight that the distribution of inactivation rate constants and the abundance of each genotype are essential parameters to accurately predict the overall inactivation of an enterovirus population by free chlorine. We conclude that predictions based on inactivation data of a single variant or reference pathogen alone likely overestimate the true disinfection efficiency of free chlorine.


Assuntos
Desinfetantes , Enterovirus , Vírus , Purificação da Água , Cloro/farmacologia , Desinfecção/métodos , Enterovirus Humano B , Genótipo , Cinética , Raios Ultravioleta , Inativação de Vírus , Purificação da Água/métodos
14.
Water Res ; 186: 116291, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836147

RESUMO

Ozone has a strong oxidation power that allows effective inactivation of waterborne viruses. Few studies have accurately measured the kinetic relationship between virus inactivation and ozone exposure, because the high reactivity of ozone makes it difficult to measure them simultaneously. A continuous quench flow system (CQFS) is a possible solution for analyzing such a fast reaction; however, previous studies reported that CQFS provided different results of inactivation rate constants from the batch system. The objectives of this study were (1) to develop a CQFS to evaluate the kinetics of microbial inactivation accurately, (2) to evaluate the inactivation rate constants of waterborne virus by ozone, and (3) to compare the results with previous studies. The results indicated that the simple plug flow assumption in the reaction tube of CQFS led to underestimation of the rate constants. The accurate measurement of rate constants was achieved by the pseudo-first-order reaction model that takes the residence time distribution (RTD; i.e., the laminar flow assumption) into account. The results of inactivation experiments suggested that the resistance of viruses were getting higher in the following order: Qß < MS2, fr, GA < CVB5 Faulkner, φX-174, PV1 Sabin, CVB3 Nancy. The environmental isolates of CVB3 and CVB5 had a 2-fold higher resistance compared with their lab strains. Predicted CT values for 4-log inactivation ranged from 0.018 mg sec L-1 (Qß) to 0.31 mg sec L-1 (CVB3 Environmental strain). The required CT values for 4-log PV1 inactivation was 0.15 mg sec L-1, which was 166-fold smaller than those reported in the United States Environmental Protection Agency guidance manuals. The overestimation in previous studies was due to the sparse assumption of RTD in the reactor. Consequently, the required ozone CT values for virus inactivation should be reconsidered to minimize the health risks and environmental costs in water treatment.


Assuntos
Ozônio , Vírus , Purificação da Água , Desinfecção , Cinética , Inativação de Vírus
15.
Sci Rep ; 9(1): 11970, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427704

RESUMO

In the endgame of global polio eradication, serosurveillance is essential to monitor each country's vulnerability to poliomyelitis outbreaks. Previously, we developed pseudovirus poliovirus (PV) neutralization test (pPNT) with type 1, 2, and 3 PV pseudovirus (PVpv), which possess a luciferase-encoding PV replicon in the capsids of wild-type strains (PVpv[WT]), showing that pPNT with type 2 and 3 PVpv(WT) but not type 1 shows high correlation with the conventional PV neutralization test (cPNT) performed with vaccine strains. Here, we analyse the antigenicity of PVpv(WT) and PVpv with capsid proteins of Sabin vaccine strains (PVpv[Sabin]) in human serum. Type 2 and 3 PVpv(WT) and PVpv(Sabin) show similar antigenicity in the analysed set of human sera in contrast to type 1 PVpv. The levels of PVpv(Sabin) infection (%), including about 70% of PVpv infection (%) measured in the presence of human serum diluted to the cPNT titre, serve as the optimal threshold values for pPNT (5% for type 1 and 2, 10% for type 3) to show high correlation with cPNT results. Our results suggest that pPNT with PVpv(Sabin) could serve as an alternative to cPNT and provide a rationale for pPNT threshold values.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais/imunologia , Imunogenicidade da Vacina , Testes de Neutralização , Poliomielite/imunologia , Poliovirus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Linhagem Celular , Humanos , Poliomielite/sangue , Poliomielite/prevenção & controle , Poliovirus/classificação , Proteínas Recombinantes de Fusão , Reprodutibilidade dos Testes
16.
Vaccine ; 37(14): 1964-1971, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30827736

RESUMO

In Japan, the oral poliovirus vaccine (OPV) was changed to 2 types of inactivated poliovirus vaccine (IPV), the standalone conventional IPV (cIPV) and the Sabin-derived IPV combined with diphtheria-tetanus-acellular pertussis vaccine (DTaP-sIPV), for routine immunization in 2012. We evaluated polio vaccination coverage and the seroprevalence of poliovirus antibodies using data from the National Epidemiological Surveillance of Vaccine-Preventable Diseases (NESVPD) from 2011 to 2015. Several years before the introduction of IPV in 2012, OPV administration for children was refused by some parents because of concerns about the risk of vaccine-associated paralytic poliomyelitis. Consequently, in children aged <1 years who were surveyed in 2011-2012, polio vaccination coverage (45.0-48.8%) and seropositivity rates for poliovirus (type 1: 51.7-65.9%, type 2: 48.3-53.7%, and type 3: 15.0-29.3%) were decreased compared to those surveyed in 2009. However, after IPV introduction, the vaccination coverage (95.5-100%) and seropositivity rates (type 1: 93.2-96.6%, type 2: 93.1-100%, and type 3: 88.6-93.9%) increased among children aged <1 years in 2013-2015. In particular, seropositivity rates and geometric mean titers (GMTs) for poliovirus type 3 in <5-year-old children who received 4 doses of IPV (98.5% and 247.4, respectively) were significantly higher than in those who received 2 doses of OPV (72.5% and 22.9, respectively). Furthermore, in <5-year-old children who received 4 doses of either DTaP-sIPV or cIPV, the seropositivity rates and the GMTs for all 3 types of poliovirus were similarly high (96.5-100% and 170.3-368.8, respectively). Our findings from the NESVPD demonstrate that both the vaccination coverage and seropositivity rates for polio remained high in children after IPV introduction.


Assuntos
Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Vacina Antipólio de Vírus Inativado/imunologia , Poliovirus/imunologia , Vacinação , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Japão/epidemiologia , Estudos Soroepidemiológicos , Cobertura Vacinal
17.
Front Microbiol ; 10: 1470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333607

RESUMO

Genotyping evidence that supports the interruption of endemic measles virus (MV) transmission is one of the essential criteria to be verified in achieving measles elimination. In Japan since 2014, MV genotype analyses have been performed for most of the measles cases in prefectural public health institutes nationwide. With this strong molecular epidemiological data, Japan was verified to have eliminated measles in March, 2015. However, even in the postelimination era, sporadic cases and small outbreaks of measles have been detected repeatedly in Japan. This study investigated the nationwide molecular epidemiology of MV between 2008 and 2017. The 891 strains in the total period between 2008 and 2017 belonged to seven genotypes (D5, D4, D9, H1, G3, B3, and D8) and 124 different MV sequence variants, based on the 450-nucleotide sequence region of the N gene (N450). The 311 MV strains in the postelimination era between 2015 and 2017 were classified into 1, 7, 8, and 32 different N450 sequence variants in D9, H1, B3, and D8 genotypes, respectively. Analysis of the detection period of the individual N450 sequence variants showed that the majority of MV strains were detected only for a short period. However, MV strains, MVs/Osaka.JPN/29.15/ [D8] and MVi/Hulu Langat.MYS/26.11/ [D8], which are named strains designated by World Health Organization (WHO), have been detected in many cases over 2 or 3 years between 2015 and 2017. The WHO-named strains have circulated worldwide, causing outbreaks in many countries. Epidemiological investigation revealed repeated importation of these WHO-named strains into Japan. To demonstrate the elimination status (interruption of endemic transmission) in situations with repeated importation of the same strains is challenging. Nevertheless, the detailed sequence analysis of individual MV strains and chronological analysis of these strains provided sufficient evidence to show that Japan has still maintained its measles elimination status in 2017.

18.
Front Microbiol ; 8: 1513, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848523

RESUMO

A nationwide rubella epidemic occurred from 2012 to 2013 in Japan, resulting in around 17,000 rubella cases and the birth of 45 infants with congenital rubella syndrome. The aim of this study was to genetically characterize the rubella viruses (RVs) circulating around the time of the epidemic in Japan. In total, 221 RV strains detected from 14 prefectures in Japan between 2010 and 2014 were sequenced in the 739 nucleotide-window region within the E1 gene. The virus strains were chronologically and geographically characterized into groups based on phylogenetic analysis. Among the 221 strains analyzed, 192 (87%), 26 (12%), and 3 (1%) strains were classified into genotypes 2B, 1E, and 1J, respectively. The majority (n = 184) of the genotype 2B strains belonged to lineage 2B-L1 and shared nucleotide homology with the strains detected in Southeast and East Asian countries. Phylogenetic analyses demonstrated that at least six distinct clusters of RV strains (clusters 1-6) induced outbreaks in Japan between 2010 and 2014. Among them, strains from clusters 3, 4, and 6 circulated almost simultaneously during 2012-2013. The cluster 3 strains circulated locally, whereas strains from cluster 4 spread nationwide. The findings suggest that RVs were introduced into Japan many times from neighboring countries. The 2012-2013 epidemic was a complex of outbreaks induced by at least three clusters of RV strains.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa