Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 253(2): 63, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544231

RESUMO

MAIN CONCLUSION: Karyotyping using high-density genome-wide SNP markers identified various chromosomal aberrations in oil palm (Elaeis guineensis Jacq.) with supporting evidence from the 2C DNA content measurements (determined using FCM) and chromosome counts. Oil palm produces a quarter of the world's total vegetable oil. In line with its global importance, an initiative to sequence the oil palm genome was carried out successfully, producing huge amounts of sequence information, allowing SNP discovery. High-capacity SNP genotyping platforms have been widely used for marker-trait association studies in oil palm. Besides genotyping, a SNP array is also an attractive tool for understanding aberrations in chromosome inheritance. Exploiting this, the present study utilized chromosome-wide SNP allelic distributions to determine the ploidy composition of over 1,000 oil palms from a commercial F1 family, including 197 derived from twin-embryo seeds. Our method consisted of an inspection of the allelic intensity ratio using SNP markers. For palms with a shifted or abnormal distribution ratio, the SNP allelic frequencies were plotted along the pseudo-chromosomes. This method proved to be efficient in identifying whole genome duplication (triploids) and aneuploidy. We also detected several loss of heterozygosity regions which may indicate small chromosomal deletions and/or inheritance of identical by descent regions from both parents. The SNP analysis was validated by flow cytometry and chromosome counts. The triploids were all derived from twin-embryo seeds. This is the first report on the efficiency and reliability of SNP array data for karyotyping oil palm chromosomes, as an alternative to the conventional cytogenetic technique. Information on the ploidy composition and chromosomal structural variation can help to better understand the genetic makeup of samples and lead to a more robust interpretation of the genomic data in marker-trait association analyses.


Assuntos
Arecaceae , Aberrações Cromossômicas , Repetições de Microssatélites , Ploidias , Arecaceae/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes
2.
Breed Sci ; 71(2): 253-260, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34377073

RESUMO

Oil palm is continually being improved via controlled crossing of selected palms to ensure sustainable yields and productivity. As such, correct parental assignment is important as the presence of illegitimates will compromise the progress of improvement. In the present study, we determined the optimal number of microsatellite (SSR) markers for detection of illegitimates in selected oil palm crosses with high confidence. Determining the optimal number of markers to assign parentage will ensure that the DNA fingerprinting will be cost effective for routine use as a quality control tool in oil palm improvement programs. Here, we evaluated a wide range of crosses that included a cross derived from wild germplasm palm. The results revealed that markers with high PIC are informative and detect most of the alleles present in a cross, including those exhibited by the illegitimates. A larger number of optimum sets of markers are needed to detect all illegitimates for crosses with higher levels of genetic diversity. The optimal number of polymorphic SSR markers determined in the present study can ensure that appropriate quality control is implemented for oil palm improvement programs.

3.
New Phytol ; 226(2): 426-440, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863488

RESUMO

Oil palm breeding involves crossing dura and pisifera palms to produce tenera progeny with greatly improved oil yield. Oil yield is controlled by variant alleles of a type II MADS-box gene, SHELL, that impact the presence and thickness of the endocarp, or shell, surrounding the fruit kernel. We identified six novel SHELL alleles in noncommercial African germplasm populations from the Malaysian Palm Oil Board. These populations provide extensive diversity to harness genetic, mechanistic and phenotypic variation associated with oil yield in a globally critical crop. We investigated phenotypes in heteroallelic combinations, as well as SHELL heterodimerization and subcellular localization by yeast two-hybrid, bimolecular fluorescence complementation and gene expression analyses. Four novel SHELL alleles were associated with fruit form phenotype. Candidate heterodimerization partners were identified, and interactions with EgSEP3 and subcellular localization were SHELL allele-specific. Our findings reveal allele-specific mechanisms by which variant SHELL alleles impact yield, as well as speculative insights into the potential role of SHELL in single-gene oil yield heterosis. Future field trials for combinability and introgression may further optimize yield and improve sustainability.


Assuntos
Arecaceae , Melhoramento Vegetal , Alelos , Arecaceae/genética , Óleo de Palmeira , Fenótipo
4.
BMC Genet ; 18(1): 37, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28420332

RESUMO

BACKGROUND: The Elaeis oleifera genetic materials were assembled from its center of diversity in South and Central America. These materials are currently being preserved in Malaysia as ex situ living collections. Maintaining such collections is expensive and requires sizable land. Information on the genetic diversity of these collections can help achieve efficient conservation via maintenance of core collection. For this purpose, we have applied fourteen unlinked microsatellite markers to evaluate 532 E. oleifera palms representing 19 populations distributed across Honduras, Costa Rica, Panama and Colombia. RESULTS: In general, the genetic diversity decreased from Costa Rica towards the north (Honduras) and south-east (Colombia). Principle coordinate analysis (PCoA) showed a single cluster indicating low divergence among palms. The phylogenetic tree and STRUCTURE analysis revealed clusters based on country of origin, indicating considerable gene flow among populations within countries. Based on the values of the genetic diversity parameters, some genetically diverse populations could be identified. Further, a total of 34 individual palms that collectively captured maximum allelic diversity with reduced redundancy were also identified. High pairwise genetic differentiation (Fst > 0.250) among populations was evident, particularly between the Colombian populations and those from Honduras, Panama and Costa Rica. Crossing selected palms from highly differentiated populations could generate off-springs that retain more genetic diversity. CONCLUSION: The results attained are useful for selecting palms and populations for core collection. The selected materials can also be included into crossing scheme to generate offsprings that capture greater genetic diversity for selection gain in the future.


Assuntos
Arecaceae/genética , Variação Genética , Repetições de Microssatélites/genética , Sequência Conservada , Filogenia , Especificidade da Espécie
5.
BMC Genomics ; 17: 289, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27079197

RESUMO

BACKGROUND: The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil. RESULTS: In this study, a segregating E. oleifera x E. guineensis (OxG) hybrid population for FAC is used to identify quantitative trait loci (QTLs) linked to IV and various FAs. QTL analysis revealed 10 major and two putative QTLs for IV and six FAs, C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2 distributed across six linkage groups (LGs), OT1, T2, T3, OT4, OT6 and T9. The major QTLs for IV and C16:0 on LGOT1 explained 60.0 - 69.0 % of the phenotypic trait variation and were validated in two independent BC2 populations. The genomic interval contains several key structural genes in the FA and oil biosynthesis pathways such as PATE/FATB, HIBCH, BASS2, LACS4 and DGAT1 and also a relevant transcription factor (TF), WRI1. The literature suggests that some of these genes can exhibit pleiotropic effects in the regulatory networks of these traits. Using the whole genome sequence data, markers tightly linked to the candidate genes were also developed. Clustering trait values according to the allelic forms of these candidate markers revealed significant differences in the IV and FAs of the palms in the mapping and validation crosses. CONCLUSIONS: The candidate gene approach described and exploited here is useful to identify the potential causal genes linked to FAC and can be adopted for marker-assisted selection (MAS) in oil palm.


Assuntos
Arecaceae/genética , Mapeamento Cromossômico , Ácidos Graxos/química , Locos de Características Quantitativas , Arecaceae/química , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Repetições de Microssatélites , Óleo de Palmeira , Fenótipo , Óleos de Plantas/química , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
6.
BMC Genomics ; 15: 309, 2014 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-24767304

RESUMO

BACKGROUND: Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest. RESULTS: A 4.5 K customized oil palm SNP array was developed using the Illumina Infinium platform. The SNPs and 252 SSRs were genotyped on two mapping populations, an intraspecific cross with 87 palms and an interspecific cross with 108 palms. Parental maps with 16 linkage groups (LGs), were constructed for the three fruit forms of E. guineensis (dura, pisifera and tenera). Map resolution was further increased by integrating the dura and pisifera maps into an intraspecific integrated map with 1,331 markers spanning 1,867 cM. We also report the first map of a Colombian E. oleifera, comprising 10 LGs with 65 markers spanning 471 cM. Although not very dense due to the high level of homozygosity in E. oleifera, the LGs were successfully integrated with the LGs of the tenera map. Direct comparison between the parental maps identified 603 transferable markers polymorphic in at least two of the parents. Further analysis revealed a high degree of marker transferability covering 1,075 cM, between the intra- and interspecific integrated maps. The interspecific cross displayed higher segregation distortion than the intraspecific cross. However, inclusion of distorted markers in the genetic maps did not disrupt the marker order and no map expansion was observed. CONCLUSIONS: The high density SNP and SSR-based genetic maps reported in this paper have greatly improved marker density and genome coverage in comparison with the first reference map based on AFLP and SSR markers. Therefore, it is foreseen that they will be more useful for fine mapping of QTLs and whole genome association mapping studies in oil palm.


Assuntos
Arecaceae/genética , Mapeamento Cromossômico , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Ligação Genética , Genoma de Planta , Genótipo , Polimorfismo de Fragmento de Restrição , Locos de Características Quantitativas
7.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-33707358

RESUMO

The present study evaluated an interspecific backcross two (BC2) population of oil palm, which was segregating for fatty acid composition (FAC). The purpose of this study was to construct a high-density genetic map for the population, which could be used to anchor the Elaeis guineensis (EG5) and E. oleifera (O7) genome builds and determine the physical positions of the quantitative trait loci (QTLs) associated with FAC. A high-density SNP-based and SSR-based linkage map was successfully constructed for an E. guineensis x E. oleifera BC2 population. The genetic map had 16 linkage groups spanning 1618.4 cM with 1252 markers (1152 SNPs and 100 SSRs). The physical location of the markers were determined through sequence similarity search against EG5 and O7. The majority of markers (81.2%) showed map order consistent with their corresponding position on EG5. In total, 1218 markers were also anchored to 683 scaffolds in O7. This study for the first time compared the genetic map of the BC2 population with that of a published E. oleifera x E. guineensis (O x G) interspecific F1 hybrid, which revealed 433 common markers (34.6%). More importantly marker order was generally consistent in both maps. The published EG5 facilitated orientating the mapped markers in the present BC2 map as well as in the O7 scaffolds. Major QTLs associated with iodine value (IV) and palmitic acid (C16:0) content, localized on chromosome 3 and linoleic acid (C18:2) content localized on chromosome 2 of EG5 were also for the first time positioned on the O7 build, revealing the corresponding position in the E. oleifera genome likely influencing FAC in hybrids and backcrosses.


Assuntos
Arecaceae/genética , Genes de Plantas , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Plant Sci ; 304: 110731, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568284

RESUMO

Existing Elaeis guineensis cultivars lack sufficient genetic diversity due to extensive breeding. Harnessing variation in wild crop relatives is necessary to expand the breadth of agronomically valuable traits. Using RAD sequencing, we examine the natural diversity of wild American oil palm populations (Elaeis oleifera), a sister species of the cultivated Elaeis guineensis oil palm. We genotyped 192 wild E. oleifera palms collected from seven Latin American countries along with four cultivated E. guineensis palms. Honduras, Costa Rica, Panama and Colombia palms are panmictic and genetically similar. Genomic patterns of diversity suggest that these populations likely originated from the Amazon Basin. Despite evidence of a genetic bottleneck and high inbreeding observed in these populations, there is considerable genetic and phenotypic variation for agronomically valuable traits. Genome-wide association revealed several candidate genes associated with fatty acid composition along with vegetative and yield-related traits. These observations provide valuable insight into the geographic distribution of diversity, phenotypic variation and its genetic architecture that will guide choices of wild genotypes for crop improvement.


Assuntos
Arecaceae/genética , Ácidos Graxos/metabolismo , Variação Genética/genética , Alelos , Arecaceae/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Análise de Sequência de DNA
9.
Nat Commun ; 5: 4106, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978855

RESUMO

Oil palm, a plantation crop of major economic importance in Southeast Asia, is the predominant source of edible oil worldwide. We report the identification of the virescens (VIR) gene, which controls fruit exocarp colour and is an indicator of ripeness. VIR is a R2R3-MYB transcription factor with homology to Lilium LhMYB12 and similarity to Arabidopsis production of anthocyanin pigment1 (PAP1). We identify five independent mutant alleles of VIR in over 400 accessions from sub-Saharan Africa that account for the dominant-negative virescens phenotype. Each mutation results in premature termination of the carboxy-terminal domain of VIR, resembling McClintock's C1-I allele in maize. The abundance of alleles likely reflects cultural practices, by which fruits were venerated for magical and medicinal properties. The identification of VIR will allow selection of the trait at the seed or early-nursery stage, 3-6 years before fruits are produced, greatly advancing introgression into elite breeding material.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Nandiniidae/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Nandiniidae/classificação , Nandiniidae/genética , Proteínas Associadas a Pancreatite , Filogenia , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética
10.
C R Biol ; 334(4): 290-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21513898

RESUMO

Studies were conducted to assess the genetic relationships between the parental palms (dura and pisifera) and performance of their progenies based on nine microsatellite markers and 29 quantitative traits. Correlation analyses between genetic distances and hybrids performance were estimated. The coefficients of correlation values of genetic distances with hybrid performance were non-significant, except for mean nut weight and leaf number. However, the correlation coefficient of genetic distances with these characters was low to be used as predicted value. These results indicated that genetic distances based on the microsatellite markers may not be useful for predicting hybrid performance. The genetic distance analysis using UPGMA clustering system generated 5 genetic clusters with coefficient of 1.26 based on quantitative traits of progenies. The genotypes, DP16, DP14, DP4, DP13, DP12, DP15, DP8, DP1 and DP2 belonging to distant clusters and greater genetic distances could be selected for further breeding programs.


Assuntos
Arecaceae/anatomia & histologia , Arecaceae/genética , Variação Genética , Genótipo , Alelos , Autorradiografia , Quimera/genética , Análise Custo-Benefício , Cruzamentos Genéticos , Primers do DNA , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Desoxirribonucleases de Sítio Específico do Tipo II/química , Eletroforese em Gel de Poliacrilamida , Marcadores Genéticos/genética , Hidrólise , Repetições de Microssatélites/genética , Óleo de Palmeira , Folhas de Planta/química , Óleos de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Genet ; 89(2): 135-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20861564

RESUMO

This study reports on the detection of additional expressed sequence tags (EST) derived simple sequence repeat (SSR) markers for the oil palm. A large collection of 19243 Elaeis guineensis ESTs were assembled to give 10258 unique sequences, of which 629 ESTs were found to contain 722 SSRs with a variety of motifs. Dinucleotide repeats formed the largest group (45.6%) consisting of 66.9% AG/CT, 21.9% AT/AT, 10.9% AC/GT and 0.3% CG/CG motifs. This was followed by trinucleotide repeats, which is the second most abundant repeat types (34.5%) consisting of AAG/CTT (23.3%), AGG/CCT (13.7%), CCG/CGG (11.2%), AAT/ATT (10.8%), AGC/GCT (10.0%), ACT/AGT (8.8%), ACG/CGT (7.6%), ACC/GGT (7.2%), AAC/GTT (3.6%) and AGT/ACT (3.6%) motifs. Primer pairs were designed for 405 unique EST-SSRs and 15 of these were used to genotype 105 E. guineensis and 30 E. oleifera accessions. Fourteen SSRs were polymorphic in at least one germplasm revealing a total of 101 alleles. The high percentage (78.0%) of alleles found to be specific for either E. guineensis or E. oleifera has increased the power for discriminating the two species. The estimates of genetic differentiation detected by EST-SSRs were compared to those reported previously. The transferability across palm taxa to two Cocos nucifera and six exotic palms is also presented. The polymerase chain reaction (PCR) products of three primer-pairs detected in E. guineensis, E. oleifera, C. nucifera and Jessinia bataua were cloned and sequenced. Sequence alignments showed mutations within the SSR site and the flanking regions. Phenetic analysis based on the sequence data revealed that C. nucifera is closer to oil palm compared to J. bataua; consistent with the taxanomic classification.


Assuntos
Arecaceae/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Variação Genética/genética , Repetições de Microssatélites/genética , África , Alelos , Ásia , Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Biblioteca Genômica , Filogenia , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa