Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Arch Microbiol ; 206(5): 228, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643446

RESUMO

A novel Lysinibacillus strain, designated KH24T, was isolated from the gut of Siganus fuscescens, a herbivorous fish, which was captured off the coast of Okinawa, Japan. Strain KH24T is a rod-shaped, Gram-stain-positive, spore-forming, and motile bacterium that forms off-white colonies. The 16S rRNA gene sequence of strain KH24T showed the highest similarity (97.4%) with Lysinibacillus pakistanensis JCM 18776T and L. irui IRB4-01T. Genomic similarities between strain KH24T and Lysinibacillus type strains, based on average nucleotide identity, digital DNA-DNA hybridization (genome-to-genome distance calculation), and average amino acid identity were 70.4-77.7%, 17.1-24.4%, and 69.2-81.2%, respectively, which were lower than species delineation thresholds. Strain KH24T growth occurred at pH values of 5.5-8.5, temperatures of 20-40 °C, and NaCl concentrations of 0-4.0%, and optimally at pH 7.0, 30 °C, and 0%, respectively. Unlike related Lysinibacillus type strains, strain KH24T could assimilate D-glucose, D-fructose, N-acetyl-glucosamine, amygdalin, arbutin, esculin, ferric citrate, salicin, D-cellobiose, D-maltose, D-sucrose, and gentiobiose. Major fatty acids included iso-C15:0 (45.8%), anteiso-C15:0 (15.1%), iso-C17:0 (12.6%), and anteiso-C17:0 (10.9%). Menaquinone-7 was the predominant quinone, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and lysophosphatidylethanolamine. Based on its genetic and phenotypic properties, strain KH24T represents a novel species of the genus Lysinibacillus, for which the name Lysinibacillus piscis sp. nov. is proposed. The type strain is KH24T (= JCM 36611 T = KCTC 43676 T).


Assuntos
Acetilglucosamina , Amigdalina , Animais , RNA Ribossômico 16S/genética , Aminoácidos , DNA
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649233

RESUMO

Most animals harbor a gut microbiota that consists of potentially pathogenic, commensal, and mutualistic microorganisms. Dual oxidase (Duox) is a well described enzyme involved in gut mucosal immunity by the production of reactive oxygen species (ROS) that antagonizes pathogenic bacteria and maintains gut homeostasis in insects. However, despite its nonspecific harmful activity on microorganisms, little is known about the role of Duox in the maintenance of mutualistic gut symbionts. Here we show that, in the bean bug Riptortus pedestris, Duox-dependent ROS did not directly contribute to epithelial immunity in the midgut in response to its mutualistic gut symbiont, Burkholderia insecticola Instead, we found that the expression of Duox is tracheae-specific and its down-regulation by RNAi results in the loss of dityrosine cross-links in the tracheal protein matrix and a collapse of the respiratory system. We further demonstrated that the establishment of symbiosis is a strong oxygen sink triggering the formation of an extensive network of tracheae enveloping the midgut symbiotic organ as well as other organs, and that tracheal breakdown by Duox RNAi provokes a disruption of the gut symbiosis. Down-regulation of the hypoxia-responsive transcription factor Sima or the regulators of tracheae formation Trachealess and Branchless produces similar phenotypes. Thus, in addition to known roles in immunity and in the formation of dityrosine networks in diverse extracellular matrices, Duox is also a crucial enzyme for tracheal integrity, which is crucial to sustain mutualistic symbionts and gut homeostasis. We expect that this is a conserved function in insects.


Assuntos
Burkholderia/crescimento & desenvolvimento , Oxidases Duais/metabolismo , Heterópteros , Proteínas de Insetos/metabolismo , Intestinos , Simbiose/fisiologia , Animais , Oxidases Duais/genética , Heterópteros/enzimologia , Heterópteros/genética , Heterópteros/microbiologia , Proteínas de Insetos/genética , Intestinos/enzimologia , Intestinos/microbiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37675765

RESUMO

Forty-eight Acidobacteriota strains were isolated from soils and sediments in Japan. Among them, six representative strains, designated W79T, W786T, Red222T, Red802T, Red803T, and Red804T, were subjected to the taxonomic classification. These six strains are Gram-stain-negative, non-spore-forming, rod-shaped, and facultative anaerobic bacterium that can reduce ferric iron. Phylogenetic and phylogenomic trees based on 16S rRNA genes and multiple single-copy gene sequences showed that strains Red222T, Red802T, Red803T, and Red804T formed a cluster with the type strains of Geothrix species, but strains W79T and W786T created an independent cluster from any other type strains. The former four strains shared 97.95-99.08% similarities of 16S rRNA gene sequence with the type strains of the genus Geothrix, whereas the latter two strains 94.86-95.49% similarities. The average amino acid identity of strains W79T and W786T were <63 % to any other type strains, which were below the genus delineation thresholds. Moreover, colonies of these two strains were white, while those of the other four isolated strains were reddish-yellow as well as the type strain Geothrix fermentans H-5T. Although the known type strains of Geothrix species have been reported to be non-motile, five strains (W79T, W786T, Red222T, Red803T, and Red804T) except for strain Red802T displayed motility. Furthermore, multiple genomic, phylogenetic, and phenotypic features supported the discrimination between these isolated strains. Based on the study evidence, we propose these six isolates as novel members within the Acidobacteriota/Holophagae/Holophagales/Holophagaceae, comprising two novel species of a novel genus, Mesoterricola silvestris gen. nov., sp. nov., and Mesoterricola sediminis sp. nov., and four novel species of the genus Geothrix: Geothrix oryzae sp. nov., Geothrix edaphica sp. nov., Geothrix rubra sp. nov., and Geothrix limicola sp. nov.


Assuntos
Ácidos Graxos , Solo , Composição de Bases , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química
4.
Microb Ecol ; 86(2): 1307-1318, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36178538

RESUMO

Many insects possess symbiotic bacteria in their bodies, and microbial symbionts play pivotal metabolic roles for their hosts. Members of the heteropteran superfamilies Coreoidea and Lygaeoidea stinkbugs harbor symbionts of the genus Caballeronia in their intestinal tracts. Compared with symbiotic associations in Coreoidea, those in Lygaeoidea insects are still less understood. Here, we investigated a symbiotic relationship involving the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae) using histological observations, cultivation of the symbiont, 16S rRNA gene amplicon sequencing, and infection testing of cultured symbionts. Histological observations and cultivation revealed that P. dissimilis harbors Caballeronia symbionts in the crypts of its posterior midgut. 16S rRNA gene amplicon sequencing of field-collected P. dissimilis confirmed that the genus Caballeronia is dominant in the midgut of natural populations of P. dissimilis. In addition, PCR diagnostics showed that the eggs were free of symbiotic bacteria, and hatchlings horizontally acquired the symbionts from ambient soil. Infection and rearing experiments revealed that symbiont-free aposymbiotic individuals had abnormal body color, small body size, and, strikingly, a low survival rate, wherein no individuals reached adulthood, indicating an obligate cooperative mutualism between the mulberry seed bug and Caballeronia symbionts.


Assuntos
Burkholderiaceae , Heterópteros , Morus , Humanos , Animais , Adulto , Simbiose , RNA Ribossômico 16S/genética , Filogenia , Heterópteros/genética , Heterópteros/microbiologia , Insetos , Bactérias
5.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191051

RESUMO

Three bacterial strains (Red232T, Red267T and Red630T) were isolated from paddy soils sampled in Japan. Cells of these strains were Gram-stain-negative, facultative anaerobic, long rod-shaped with monotrichous flagella or pilus-like structures for motility, and formed red colonies on agar plates. Phylogenetic trees based on 16S rRNA gene and multiple single-copy gene sequences showed that the three strains formed a cluster with the type strains of Anaeromyxobacter species, independent from any other strain genera. Similarity values of the 16S rRNA gene sequences and genomes among the three isolated strains and the type strain of Anaeromyxobacter, Anaeromyxobacter dehalogenans 2CP-1T, were 95.4-97.4% for 16S rRNA gene sequence, 75.3-79.5% for average nucleotide identity, 19.6-21.7% for digital DNA-DNA hybridization and 64.1-72.6% for average amino acid identity, all of which are below the species delineation thresholds. Nitrogenase genes were observed in the genomes of the three novel strains, but not in A. dehalogenans 2CP-1T. Moreover, multiple genomic, physiological and chemotaxonomic features supported the discrimination between these three strains. Based on the evidence in this study, the three isolates represent three novel independent species for which the following names are proposed: Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov. The type strains are Red232T (=NBRC 114074T=MCCC 1K03954T), Red267T (=NBRC 114075T=MCCC 1K04211T), and Red630T (=NBRC 114076T=MCCC 1K03957T), respectively.


Assuntos
Ácidos Graxos , Solo , Ágar , Aminoácidos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Nitrogenase/genética , Hibridização de Ácido Nucleico , Nucleotídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Proc Natl Acad Sci U S A ; 116(45): 22673-22682, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636183

RESUMO

Despite the omnipresence of specific host-symbiont associations with acquisition of the microbial symbiont from the environment, little is known about how the specificity of the interaction evolved and is maintained. The bean bug Riptortus pedestris acquires a specific bacterial symbiont of the genus Burkholderia from environmental soil and harbors it in midgut crypts. The genus Burkholderia consists of over 100 species, showing ecologically diverse lifestyles, and including serious human pathogens, plant pathogens, and nodule-forming plant mutualists, as well as insect mutualists. Through infection tests of 34 Burkholderia species and 18 taxonomically diverse bacterial species, we demonstrate here that nonsymbiotic Burkholderia and even its outgroup Pandoraea could stably colonize the gut symbiotic organ and provide beneficial effects to the bean bug when inoculated on aposymbiotic hosts. However, coinoculation revealed that the native symbiont always outcompeted the nonnative bacteria inside the gut symbiotic organ, explaining the predominance of the native Burkholderia symbiont in natural bean bug populations. Hence, the abilities for colonization and cooperation, usually thought of as specific traits of mutualists, are not unique to the native Burkholderia symbiont but, to the contrary, competitiveness inside the gut is a derived trait of the native symbiont lineage only and was thus critical in the evolution of the insect gut symbiont.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Simbiose , Animais , Modelos Biológicos
7.
Artigo em Inglês | MEDLINE | ID: mdl-33295856

RESUMO

Three bacterial strains, designated Red330T, Red736T and Red745T, were isolated from forest and paddy soils in Japan. Strains Red330T, Red736T and Red745T are flagella-harbouring and strictly anaerobic bacteria forming red colonies. A 16S rRNA gene sequence-based phylogenetic tree showed that all three strains were located in a cluster, including the type strains of Geomonas species, which were recently separated from the genus Geobacter within the family Geobacteraceae. Similarities of the 16S rRNA gene sequences among the three strains and Geomonas oryzae S43T, the type species of the genus Geomonas, were 96.3-98.5 %. The genome-related indexes, average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity, among the three strains and G. oryzae S43T were 74.7-86.8 %, 21.2-33.3 % and 70.4-89.8 %, respectively, which were lower than the species delineation thresholds. Regarding the phylogenetic relationships based on genome sequences, the three strains clustered with the type strains of Geomonas species, which were independent from the type strains of Geobacter species. The distinguishableness of the three isolated strains was supported by physiological and chemotaxonomic properties, with the profile of availability of electron donors and cellular fatty acids composition being particularly different among them. Based on genetic, phylogenetic and phenotypic properties, the three isolates represent three novel independent species in the genus Geomonas, for which the names Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov. are proposed. The type strains are Red330T (=NBRC 114028T=MCCC 1K03949T), Red736T (=NBRC 114029T=MCCC 1K03950T) and Red745T (=NBRC 114030T=MCCC 1K03951T), respectively.


Assuntos
Deltaproteobacteria/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Deltaproteobacteria/isolamento & purificação , Ácidos Graxos/química , Florestas , Japão , Hibridização de Ácido Nucleico , Oryza , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Biol Lett ; 17(3): 20200780, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33653096

RESUMO

Resistance to toxins in insects is generally thought of as their own genetic trait, but recent studies have revealed that gut microorganisms could mediate resistance by detoxifying phytotoxins and man-made insecticides. By laboratory experiments, we here discovered a striking example of gut symbiont-mediated insecticide resistance in a serious rice pest, Cletus punctiger. The rice bug horizontally acquired fenitrothion-degrading Burkholderia through oral infection and housed it in midgut crypts. Fenitrothion-degradation test revealed that the gut-colonizing Burkholderia retains a high degrading activity of the organophosphate compound in the insect gut. This gut symbiosis remarkably increased resistance against fenitrothion treatment in the host rice bug. Considering that many stinkbug pests are associated with soil-derived Burkholderia, our finding strongly supports that a number of stinkbug species could gain resistance against insecticide simply by acquiring insecticide-degrading gut bacteria.


Assuntos
Microbioma Gastrointestinal , Heterópteros , Oryza , Animais , Humanos , Resistência a Inseticidas , Laboratórios , Simbiose
9.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32532868

RESUMO

Biological nitrogen fixation is an essential reaction in a major pathway for supplying nitrogen to terrestrial environments. Previous culture-independent analyses based on soil DNA/RNA/protein sequencing could globally detect the nitrogenase genes/proteins of Anaeromyxobacter (in the class Deltaproteobacteria), commonly distributed in soil environments and predominant in paddy soils; this suggests the importance of Anaeromyxobacter in nitrogen fixation in soil environments. However, direct experimental evidence is lacking; there has been no research on the genetic background and ability of Anaeromyxobacter to fix nitrogen. Therefore, we verified the diazotrophy of Anaeromyxobacter based on both genomic and culture-dependent analyses using Anaeromyxobacter sp. strains PSR-1 and Red267 isolated from soils. Based on the comparison of nif gene clusters, strains PSR-1 and Red267 as well as strains Fw109-5, K, and diazotrophic Geobacter and Pelobacter in the class Deltaproteobacteria contain the minimum set of genes for nitrogenase (nifBHDKEN). These results imply that Anaeromyxobacter species have the ability to fix nitrogen. In fact, Anaeromyxobacter PSR-1 and Red267 exhibited N2-dependent growth and acetylene reduction activity (ARA) in vitro Transcriptional activity of the nif gene was also detected when both strains were cultured with N2 gas as a sole nitrogen source, indicating that Anaeromyxobacter can fix and assimilate N2 gas by nitrogenase. In addition, PSR-1- or Red267-inoculated soil showed ARA activity and the growth of the inoculated strains on the basis of RNA-based analysis, demonstrating that Anaeromyxobacter can fix nitrogen in the paddy soil environment. Our study provides novel insights into the pivotal environmental function, i.e., nitrogen fixation, of Anaeromyxobacter, which is a common soil bacterium.IMPORTANCEAnaeromyxobacter is globally distributed in soil environments, especially predominant in paddy soils. Current studies based on environmental DNA/RNA analyses frequently detect gene fragments encoding nitrogenase of Anaeromyxobacter from various soil environments. Although the importance of Anaeromyxobacter as a diazotroph in nature has been suggested by culture-independent studies, there has been no solid evidence and validation from genomic and culture-based analyses that Anaeromyxobacter fixes nitrogen. This study demonstrates that Anaeromyxobacter harboring nitrogenase genes exhibits diazotrophic ability; moreover, N2-dependent growth was demonstrated in vitro and in the soil environment. Our findings indicate that nitrogen fixation is important for Anaeromyxobacter to survive under nitrogen-deficient environments and provide a novel insight into the environmental function of Anaeromyxobacter, which is a common bacterium in soils.


Assuntos
Myxococcales/metabolismo , Ciclo do Nitrogênio , Fixação de Nitrogênio , Microbiologia do Solo , Myxococcales/classificação , Myxococcales/isolamento & purificação , Fixação de Nitrogênio/genética
10.
Int J Syst Evol Microbiol ; 70(7): 4119-4129, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32539909

RESUMO

A marine strain, designated KK4T, was isolated from the surface of a starfish, Patiria pectinifera, which was collected from seawater off the coast of Hokkaido, Japan. Strain KK4T is a Gram-stain-negative, non-spore-forming, rod-shaped, aerobic bacterium that forms yellow-pigmented colonies. A phylogenetic relationship analysis, based on 16S rRNA gene sequences, revealed that strain KK4T was closely related to Ulvibacter marinus IMCC12008T, Ulvibacter antarcticus IMCC3101T and Ulvibacter litoralis KMM 3912T, with similarities of 96.9, 95.8 and 95.6 %, respectively, but low sequence similarities (<94 %) among other genera in the family Flavobacteriaceae. Genomic similarities between strain KK4T and the three Ulvibacter type strains based on average nucleotide identity and digital DNA-DNA hybridization values were lower than the species delineation thresholds. Moreover, phylogenetic tree based on genome sequences showed that strain KK4T was clustered with U. marinus IMCC12008T and formed a branch independent from the cluster including type species of the genera Ulvibacter, Marixanthomonas, Marinirhabdus, Aureitalea and Aequorivita. Amino acid identity values between strain KK4T/U. marinus IMCC12008T and the neighbour type species/strains were 61.9-68.2% and 61.5-67.4 %, which were lower than the genus delineation threshold, implying the novel genus status of strain KK4T. Strain KK4T growth occurred at pH 6.0-9.0, 4-30 °C and in NaCl concentrations of 0.5-5.0 %, and optimally at pH 7.0, 25 °C and 3.0 %, respectively. Unlike Ulvibacter strains, strain KK4T could assimilate glucose, mannose, galactose and acetate. The major quinone and fatty acids were menaquinone-6 and iso-C15 : 0 (27.5 %), iso-C15 : 1 G (22.5 %) and iso-C17 : 0 3-OH (12.8 %), respectively. Based on genetic, phylogenetic and phenotypic properties, strain KK4T represents a novel species of the genus Patiriisocius, for which the name Patiriisocius marinistellae gen. nov., sp. nov. is proposed. The type strain is KK4T (=JCM 33344T=KCTC 72225T). In addition, based on the current data, Ulvibacter marinus should be reclassified as Patiriisocius marinus comb. nov.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Estrelas-do-Mar/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Japão , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Nat Prod Rep ; 35(5): 434-454, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29644346

RESUMO

Covering: up to 2018 Insects live in a world full of toxic compounds such as plant toxins and manmade pesticides. To overcome the effects of these toxins, herbivorous insects have evolved diverse, elaborate mechanisms of resistance, such as toxin avoidance, target-site alteration, and detoxification. These resistance mechanisms are thought to be encoded by the insects' own genomes, and in many cases, this holds true. However, recent omics analyses, in conjunction with classic culture-dependent analyses, have revealed that a number of insects possess specific gut microorganisms, some of which significantly contribute to resistance against phytotoxins and pesticides by degrading such chemical compounds. Here, we review recent advances in our understanding on the symbiont-mediated degradation of natural and artificial toxins, with a special emphasis on their underlying genetic basis, focus on the importance of environmental microbiota as a resource of toxin-degrading microorganisms, and discuss the ecological and evolutionary significance of these symbiotic associations.


Assuntos
Insetos/efeitos dos fármacos , Insetos/microbiologia , Praguicidas/farmacocinética , Simbiose/fisiologia , Toxinas Biológicas/farmacocinética , Animais , Evolução Biológica , Enzimas/genética , Enzimas/metabolismo , Inativação Metabólica/genética , Isotiocianatos/farmacocinética , Oxalatos/farmacocinética , Fenóis/farmacocinética , Simbiose/efeitos dos fármacos , Terpenos/farmacocinética
12.
Environ Sci Technol ; 49(13): 7684-91, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26020820

RESUMO

Selenate is one of the most common toxic metal compounds in contaminated soils. Its redox status can be changed by microbial activity, thus affecting its water solubility and soil mobility. However, current knowledge of microbial dynamics has been limited by the low sensitivity of past isolation and identification protocols. Here, high-throughput Illumina sequencing of 16S rRNA genes was applied to monitor the shift of the microorganisms in an anoxic contaminated soil after Se(VI) and acetate amendment. An autoclaved soil with both chemicals and a live soil with acetate alone were used as controls. Preliminary chemical analysis clearly showed the occurrence of biological selenate reduction coupled with acetate oxidation. Principal coordinate analysis and diversity indices of Illumina-derived sequence data showed dynamic succession and diversification of the microbial community in response to selenate reduction. High-resolution phylogenetic analysis revealed that the relative frequency of an operational taxonomic unit (OTU) from the genus Dechloromonas increased remarkably from 0.2% to 36% as a result of Se(VI) addition. Multiple OTUs representing less abundant microorganisms from the Rhodocyclaceae and Comamonadaceae families had significant increases as well. This study demonstrated that these microorganisms are concertedly involved in selenate reduction of the employed contaminated soil under anoxic conditions.


Assuntos
Microbiota , Ácido Selênico/metabolismo , Microbiologia do Solo , Solo/química , Acetatos/metabolismo , Anaerobiose , Biodegradação Ambiental , Comamonadaceae/metabolismo , Microbiota/genética , Oxirredução , Análise de Componente Principal , RNA Ribossômico 16S/genética , Rhodocyclaceae/metabolismo , Análise de Sequência de DNA , Fatores de Tempo
13.
Appl Environ Microbiol ; 80(19): 5974-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038101

RESUMO

The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Animais , Sequência de Bases , Evolução Biológica , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Sistema Digestório/microbiologia , Meio Ambiente , Feminino , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
14.
Microbiome ; 12(1): 95, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790049

RESUMO

BACKGROUND: Biological nitrogen fixation is a fundamental process sustaining all life on earth. While distribution and diversity of N2-fixing soil microbes have been investigated by numerous PCR amplicon sequencing of nitrogenase genes, their comprehensive understanding has been hindered by lack of de facto standard protocols for amplicon surveys and possible PCR biases. Here, by fully leveraging the planetary collections of soil shotgun metagenomes along with recently expanded culture collections, we evaluated the global distribution and diversity of terrestrial diazotrophic microbiome. RESULTS: After the extensive analysis of 1,451 soil metagenomic samples, we revealed that the Anaeromyxobacteraceae and Geobacteraceae within Deltaproteobacteria are ubiquitous groups of diazotrophic microbiome in the soils with different geographic origins and land usage types, with particular predominance in anaerobic soils (paddy soils and sediments). CONCLUSION: Our results indicate that Deltaproteobacteria is a core bacterial taxon in the potential soil nitrogen fixation population, especially in anaerobic environments, which encourages a careful consideration on deltaproteobacterial diazotrophs in understanding terrestrial nitrogen cycling. Video Abstract.


Assuntos
Deltaproteobacteria , Metagenômica , Microbiota , Fixação de Nitrogênio , Microbiologia do Solo , Fixação de Nitrogênio/genética , Metagenômica/métodos , Microbiota/genética , Deltaproteobacteria/genética , Deltaproteobacteria/classificação , Deltaproteobacteria/metabolismo , Solo/química , Filogenia , Nitrogênio/metabolismo , Metagenoma
15.
J Bacteriol ; 194(6): 1447-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22267508

RESUMO

Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD(+)- or NADP(+)-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological roles of the ALDH family remain unknown. The PAO1 strain upregulated HDH in the presence of the hydrazone adipic acid bis(ethylidene hydrazide) (AEH). Gene disruption of the HDH-encoding hdhA (PA4022) decreased growth rates in culture medium containing AEH as the sole carbon source, and this effect was more obvious in the double gene disruption of hdhA and its orthologous exaC (PA1984), indicating that these genes are responsible for hydrazone utilization. Recombinant proteins of group X ALDHs from Escherichia coli, Paracoccus denitrificans, and Ochrobactrum anthropi also acted as HDHs in that they produced HDH activity in the cells and degraded hydrazones. These findings indicated the physiological roles of group X ALDHs in bacteria and showed that they comprise a distinct ALDH subfamily.


Assuntos
Aldeído Desidrogenase/metabolismo , Hidrazonas/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Aldeído Desidrogenase/genética , Coenzimas/metabolismo , Meios de Cultura/química , Escherichia coli/enzimologia , Escherichia coli/genética , Técnicas de Inativação de Genes , NAD/metabolismo , NADP/metabolismo , Ochrobactrum anthropi/enzimologia , Ochrobactrum anthropi/genética , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-35886559

RESUMO

The application of iron powder stimulated the growth of iron-reducing bacteria as a respiratory substrate and enhanced their nitrogen (N)-fixing activity in flooded paddy soils. High N fertilization (urea) in the flooded paddy soils has caused adverse environmental impacts such as ammonia (NH3) volatilization, nitrous oxide (N2O) emissions, and nitrate (NO3-) leaching. This study aims to investigate the effects of N fertilization rates in combination with an iron amendment on rice yields and N losses from flooded paddy fields. We performed a 2-year field plot experiment with traditional rice-wheat rotation in China's Yangtze River Delta. The investigation consisted of seven treatments, including 100%, 80%, 60%, and 0% of the conventional N (urea and commercial organic manure) fertilization rate, and 80%, 60%, and 0% of the conventional N with the iron powder (≥99% purity) amendment. The rice yields decreased with a reduction in the conventional N fertilization rate, whereas they were comparable after the iron application under the 80% and 60% conventional N rate. The critical N losses, including NH3 volatilization, N2O emissions, and NO3- and NH4+ leaching, generally decreased with a reduction in the conventional N fertilization rate. These N losses were significantly greater after the iron amendment compared with the non-amended treatments under the 80% and 60% conventional N fertilization rate in the first rice-growing season. However, it was comparable between the iron-amended and the non-amended treatments in the second season. Furthermore, NO3- leaching was the most significant N loss throughout the two rice seasons, followed by NH3 volatilization. The iron amendment significantly increased soil Fe2+ content compared with the non-amended treatments irrespective of N fertilization, suggesting the reduction of amended iron by iron-reducing bacteria and their simultaneous N fixation. A combination of the iron application with 60-80% of the conventional N fertilization rate could maintain rice yields similar to the conventional N fertilization rate while reducing the critical N losses in the flooded paddy field tested in this study. Our study leads to the establishment of novel and practical rice cultivation, which is a step towards the development of green agriculture.


Assuntos
Oryza , Solo , Agricultura , Fertilização , Fertilizantes/análise , Ferro , Nitrogênio/análise , Óxido Nitroso/análise , Oryza/química , Pós , Solo/química , Ureia
17.
mSphere ; 6(6): e0078521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34787447

RESUMO

Nitrogen fixation, a distinct process incorporating the inactive atmospheric nitrogen into the active biological processes, has been a major topic in biological and geochemical studies. Currently, insights into diversity and distribution of nitrogen-fixing microbes are dependent upon homology-based analyses of nitrogenase genes, especially the nifH gene, which are broadly conserved in nitrogen-fixing microbes. Here, we report the pitfall of using nifH as a marker of microbial nitrogen fixation. We exhaustively analyzed genomes in RefSeq (231,908 genomes) and KEGG (6,509 genomes) and cooccurrence and gene order patterns of nitrogenase genes (including nifH) therein. Up to 20% of nifH-harboring genomes lacked nifD and nifK, which encode essential subunits of nitrogenase, within 10 coding sequences upstream or downstream of nifH or on the same genome. According to a phenotypic database of prokaryotes, no species and strains harboring only nifH possess nitrogen-fixing activities, which shows that these nifH genes are "pseudo"-nifH genes. Pseudo-nifH sequences mainly belong to anaerobic microbes, including members of the class Clostridia and methanogens. We also detected many pseudo-nifH reads from metagenomic sequences of anaerobic environments such as animal guts, wastewater, paddy soils, and sediments. In some samples, pseudo-nifH overwhelmed the number of "true" nifH reads by 50% or 10 times. Because of the high sequence similarity between pseudo- and true-nifH, pronounced amounts of nifH-like reads were not confidently classified. Overall, our results encourage reconsideration of the conventional use of nifH for detecting nitrogen-fixing microbes, while suggesting that nifD or nifK would be a more reliable marker. IMPORTANCE Nitrogen-fixing microbes affect biogeochemical cycling, agricultural productivity, and microbial ecosystems, and their distributions have been investigated intensively using genomic and metagenomic sequencing. Currently, insights into nitrogen fixers in the environment have been acquired by homology searches against nitrogenase genes, particularly the nifH gene, in public databases. Here, we report that public databases include a significant amount of incorrectly annotated nifH sequences (pseudo-nifH). We exhaustively investigated the genomic structures of nifH-harboring genomes and found hundreds of pseudo-nifH sequences in RefSeq and KEGG. Over half of these pseudo-nifH sequences belonged to members of the class Clostridia, which is supposed to be a prominent nitrogen-fixing clade. We also found that the abundance of nitrogen fixers in metagenomes could be overestimated by 1.5 to >10 times due to pseudo-nifH recorded in public databases. Our results encourage reconsideration of the prevalent use of nifH as a marker of nitrogen-fixing microbes.


Assuntos
Metagenômica , Microbiota/genética , Fixação de Nitrogênio , Oxirredutases/genética , Ecossistema , Metagenoma , Microbiota/fisiologia , Nitrogênio/metabolismo , Filogenia
18.
ISME Commun ; 1(1): 60, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37938661

RESUMO

The hallmark of eusocial insects, honeybees, ants, and termites, is division of labor between reproductive and non-reproductive worker castes. In addition, environmental adaption and ecological dominance are also underpinned by symbiotic associations with beneficial microorganisms. Microbial symbionts are generally considered to be maintained in an insect colony in two alternative ways: shared among all colony members or inherited only by a specific caste. Especially in ants, the reproductive caste plays a crucial role in transmission of the symbionts shared among colony members over generations. Here, we report an exceptional case, the worker-dependent microbiota in an ant, Diacamma cf. indicum from Japan. By collecting almost all the individuals from 22 colonies in the field, we revealed that microbiota of workers is characterized by a single dominant bacterium localized at the hindgut. The bacterium belonging to an unclassified member within the phylum Firmicutes, which is scarce or mostly absent in the reproductive castes. Furthermore, we show that the gut symbiont is acquired at the adult stage. Collectively, our findings strongly suggest that the specific symbiont is maintained by only workers, demonstrating a novel pattern of ant-associated bacterial symbiosis, and thus further our understanding of host-microbe interactions in the light of sociobiology.

19.
Front Microbiol ; 12: 737531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659166

RESUMO

Geobacterales is a recently proposed order comprising members who originally belonged to the well-known family Geobacteraceae, which is a key group in terrestrial ecosystems involved in biogeochemical cycles and has been widely investigated in bioelectrochemistry and bioenergy fields. Previous studies have illustrated the taxonomic structure of most members in this group based on genomic phylogeny; however, several members are still in a pendent or chaotic taxonomic status owing to the lack of genome sequences. To address this issue, we performed this taxonomic reassignment using currently available genome sequences, along with the description of two novel paddy soil-isolated strains, designated Red51T and Red69T, which are phylogenetically located within this order. Phylogenomic analysis based on 120 ubiquitous single-copy proteins robustly separated the species Geobacter luticola from other known genera and placed the genus Oryzomonas (fam. Geobacteraceae) into the family 'Pseudopelobacteraceae'; thus, a novel genus Geomobilimonas is proposed, and the family 'Pseudopelobacteraceae' was emended. Moreover, genomic comparisons with similarity indexes, including average amino acid identity (AAI), percentage of conserved protein (POCP), and average nucleotide identity (ANI), showed proper thresholds as genera boundaries in this order with values of 70%, 65%, and 74% for AAI, POCP, and ANI, respectively. Based on this, the three species Geobacter argillaceus, Geobacter pelophilus, and Geobacter chapellei should be three novel genera, for which the names Geomobilibacter, Geoanaerobacter, and Pelotalea are proposed, respectively. In addition, the two novel isolated strains phylogenetically belonged to the genus Geomonas, family Geobacteraceae, and shared genomic similarity values higher than those of genera boundaries, but lower than those of species boundaries with each other and their neighbors. Taken together with phenotypic and chemotaxonomic characteristics similar to other Geomonas species, these two strains, Red51T and Red69T, represent two novel species in the genus Geomonas, for which the names Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. are proposed, respectively.

20.
Nat Commun ; 12(1): 6432, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741016

RESUMO

Insecticide resistance is one of the most serious problems in contemporary agriculture and public health. Although recent studies revealed that insect gut symbionts contribute to resistance, the symbiont-mediated detoxification process remains unclear. Here we report the in vivo detoxification process of an organophosphorus insecticide, fenitrothion, in the bean bug Riptortus pedestris. Using transcriptomics and reverse genetics, we reveal that gut symbiotic bacteria degrade this insecticide through a horizontally acquired insecticide-degrading enzyme into the non-insecticidal but bactericidal compound 3-methyl-4-nitrophenol, which is subsequently excreted by the host insect. This integrated "host-symbiont reciprocal detoxification relay" enables the simultaneous maintenance of symbiosis and efficient insecticide degradation. We also find that the symbiont-mediated detoxification process is analogous to the insect genome-encoded fenitrothion detoxification system present in other insects. Our findings highlight the capacity of symbiosis, combined with horizontal gene transfer in the environment, as a powerful strategy for an insect to instantly eliminate a toxic chemical compound, which could play a critical role in the human-pest arms race.


Assuntos
Inseticidas/farmacologia , Animais , Burkholderia/efeitos dos fármacos , Burkholderia/genética , Heterópteros/efeitos dos fármacos , Heterópteros/genética , Resistência a Inseticidas , Compostos Organofosforados/farmacologia , Simbiose/efeitos dos fármacos , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa