Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 105: 129759, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636717

RESUMO

Histone H2A mono-ubiquitination plays important roles in epigenetic gene expression and is also involved in tumorigenesis. Small molecules controlling H2A ubiquitination are of interest as potential chemical tools and anticancer drugs. To identify novel small molecule inhibitors of H2A ubiquitination, we synthesized and evaluated several compounds designed based on PRT4165 (1), which is a reported histone ubiquitin ligase RING1A inhibitor. We found that compound 11b strongly inhibited the viability and reduced histone H2A mono-ubiquitination in human osteosarcoma U2OS cells. Therefore, compound 11b is a promising lead compound for the development of H2A histone ubiquitination-inhibiting small molecules.


Assuntos
Histonas , Bibliotecas de Moléculas Pequenas , Ubiquitinação , Humanos , Histonas/metabolismo , Ubiquitinação/efeitos dos fármacos , Linhagem Celular Tumoral , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga
2.
Bioorg Med Chem ; 98: 117579, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168630

RESUMO

Lysine demethylase 5 (KDM5) subfamily proteins are important in epigenetic gene regulation. They are involved in the growth and drug resistance of cancer cells. Therefore, KDM5s are potential cancer therapeutic targets, and their inhibitors hold promise as anti-cancer drugs. Several KDM5 inhibitors, including KDM5-C49 (2a), have exhibited potent KDM5-inhibitory activities in in vitro enzyme assays. However, they do not show enough cellular activity despite being converted to their prodrugs. We hypothesized that their poor lipophilicity should prevent them from sufficiently penetrating the cell membrane, and introducing more lipophilic groups should improve cellular activities. In this study, we investigated 2a and KDM5-C70 (3a), a prodrug of 2a, and attempted to improve its cellular activity by replacing the N,N-dimethyl amino group of 3a with more lipophilic groups. N-Butyl, N-methyl amino compound 2e exhibited potent and selective KDM5-inhibitory activity equal to that of 2a. Furthermore, the cell membrane permeability of 3e, an ethyl ester prodrug of 2e, was six times higher than that of 3a in a parallel artificial membrane permeation assay. In addition, western blot analysis indicated that treating human lung cancer A549 cells with 3e increased histone methylation levels more strongly than that with 3a. Thus, we identified compound 3e as a more cell-active KDM5 inhibitor that has sufficient cell membrane permeability.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Lisina , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/metabolismo , Pró-Fármacos/farmacologia
3.
Bioorg Med Chem ; 100: 117632, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340642

RESUMO

Small molecule-based selective cancer cell-targeting can be a desirable anticancer therapeutic strategy. Aiming to discover such small molecules, we previously developed phenylcyclopropylamine (PCPA)-drug conjugates (PDCs) that selectively release anticancer agents in cancer cells where lysine-specific demethylase 1 (LSD1) is overexpressed. In this work, we designed PCPA-entinostat conjugates for selective cancer cell targeting. PCPA-entinostat conjugate 12 with a 4-oxybenzyl group linker released entinostat in the presence of LSD1 in in vitro assays and selectively inhibited the growth of cancer cells in preference to normal cells, suggesting the potential of PCPA-entinostat conjugates as novel anticancer drug delivery small molecules.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas , Histona Desmetilases , Neoplasias/tratamento farmacológico , Piridinas , Ciclopropanos/química
4.
Chem Pharm Bull (Tokyo) ; 72(7): 630-637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945939

RESUMO

Alzheimer's disease (AD) is the leading cause of senile dementia, and the rapid increase in the frequency of AD cases has been attributed to population aging. However, current drugs have difficulty adequately suppressing symptoms and there is still a medical need for symptomatic agents. On the other hand, it has recently become clear that epigenetic dysfunctions are deeply involved in the development of cognitive impairments. Therefore, epigenetics-related proteins have attracted much attention as drug targets for AD. Early-developed epigenetic inhibitors were inappropriate for AD treatment because of their limited potential for oral administration, blood-brain barrier penetration, high target selectivity, and sufficient dose-limiting toxicity which are essential properties for small molecule drugs targeting chronic neurodegenerative diseases such as AD. In recent years, drug discovery studies have been actively performed to overcome such problems and several novel inhibitors targeting the epigenetics-related proteins are of interest as promising AD therapeutic agents. Here, we review the small molecule inhibitors of histone deacetylase (HDAC), lysine-specific demethylase 1 (LSD1) or bromodomains and extra-terminal domain (BET) protein, that enable memory function improvement in AD model mice.


Assuntos
Doença de Alzheimer , Epigênese Genética , Inibidores de Histona Desacetilases , Histona Desmetilases , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Animais , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desacetilases/metabolismo
5.
Chem Pharm Bull (Tokyo) ; 72(2): 155-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296557

RESUMO

Peptides have recently garnered attention as middle-molecular-weight drugs with the characteristics of small molecules and macromolecules. Lysine-specific demethylase 1 (LSD1) is a potential therapeutic target for lung cancer, neuroblastoma, and leukemia, and some peptide-based LSD1 inhibitors designed based on the N-terminus of SNAIL1, a member of the SNAIL/SCRATCH family of transcription factors, have been reported. The N-terminus of SNAIL1 peptide acts as a cap of the catalytic site of LSD1, inhibiting interactions with LSD1. However, the structure-activity relationship (SAR) of these inhibitors is not yet fully understood. Therefore, in the present study, we aimed to uncover the SAR and to identify novel SNAIL1 peptide-based LSD1 inhibitors. We synthesized peptide inhibitor candidates based on truncating the N-terminus of SNAIL1 or substituting its amino acid residues. In the truncation study, we found that SNAIL1 1-16 (2), which was composed of 16 residues, strongly inhibited LSD1. Furthermore, we investigated the SAR at residues-3 and -5 from the N-terminus and found that peptides 2j and 2k, in which leucine 5 of the parent peptide is substituted with unnatural amino acids, cyclohexylalanine and norleucine, respectively, strongly inhibited LSD1. This result suggests that the hydrophobic interaction between the inhibitor peptides and LSD1 affects the LSD1-inhibitory activity. We believe that this SAR information provides a basis for the development of more potent LSD1 inhibitors.


Assuntos
Inibidores Enzimáticos , Lisina , Lisina/química , Inibidores Enzimáticos/química , Peptídeos/farmacologia , Peptídeos/química , Relação Estrutura-Atividade , Aminoácidos , Histona Desmetilases
6.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296560

RESUMO

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Avaliação Pré-Clínica de Medicamentos , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Aprendizado de Máquina , Proteínas Repressoras
7.
Chem Pharm Bull (Tokyo) ; 72(7): 638-647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945940

RESUMO

Lysine demethylase 5 (KDM5) proteins are involved in various neurological disorders, including Alzheimer's disease, and KDM5 inhibition is expected to be a therapeutic strategy for these diseases. However, the pharmacological effects of conventional KDM5 inhibitors are insufficient, as they only target the catalytic functionality of KDM5. To identify compounds that exhibit more potent pharmacological activity, we focused on proteolysis targeting chimeras (PROTACs), which degrade target proteins and thus inhibit their entire functionality. We designed and synthesized novel KDM5 PROTAC candidates based on previously identified KDM5 inhibitors. The results of cellular assays revealed that two compounds, 20b and 23b, exhibited significant neurite outgrowth-promoting activity through the degradation of KDM5A in neuroblastoma neuro 2a cells. These results suggest that KDM5 PROTACs are promising drug candidates for the treatment of neurological disorders.


Assuntos
Crescimento Neuronal , Proteólise , Proteólise/efeitos dos fármacos , Humanos , Crescimento Neuronal/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Linhagem Celular Tumoral , Estrutura Molecular , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Camundongos , Relação Dose-Resposta a Droga , Quimera de Direcionamento de Proteólise
8.
Neuron ; 112(5): 786-804.e8, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38228137

RESUMO

Chronic stress is a major risk factor for psychiatric disorders, including depression. Although depression is a highly heterogeneous syndrome, it remains unclear how chronic stress drives individual differences in behavioral responses. In this study, we developed a subtyping-based approach wherein stressed male mice were divided into four subtypes based on their behavioral patterns of social interaction deficits and anhedonia, the core symptoms of psychiatric disorders. We identified three prefrontal cortical neuronal projections that regulate repeated stress-induced behavioral phenotypes. Among them, the medial prefrontal cortex (mPFC)→anterior paraventricular thalamus (aPVT) pathway determines the specific behavioral subtype that exhibits both social deficits and anhedonia. Additionally, we identified the circuit-level molecular mechanism underlying this subtype: KDM5C-mediated epigenetic repression of Shisa2 transcription in aPVT projectors in the mPFC led to social deficits and anhedonia. Thus, we provide a set of biological aspects at the cellular, molecular, and epigenetic levels that determine distinctive stress-induced behavioral phenotypes.


Assuntos
Anedonia , Transtornos Mentais , Humanos , Camundongos , Masculino , Animais , Neurônios , Córtex Pré-Frontal/fisiologia , Transtornos Mentais/metabolismo , Fenótipo , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa