Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(12): 19146-19158, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381338

RESUMO

A beamline for temporal diagnostics of extreme ultraviolet (XUV) femtosecond pulses at the free-electron laser in Hamburg (FLASH) at DESY was designed, built and put into operation. The intense ultra-short XUV pulses of FLASH fluctuate from pulse to pulse due to the underlying FEL operating principle and demand single-shot diagnostics. To cope with this, the new beamline is equipped with a terahertz field-driven streaking setup that enables the determination of single pulse duration and arrival time. The parameters of the beamline and the diagnostic setup as well as some first experimental results will be presented. In addition, concepts for parasitic operation are investigated.

2.
Opt Express ; 29(7): 10491-10508, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820183

RESUMO

Self-amplified spontaneous emission (SASE) pulses delivered by free electron lasers (FELs) are inherently fluctuating sources; each pulse varies in energy, duration, arrival time and spectral shape. Therefore, there is strong demand for a full characterization of the properties of SASE radiation, which will facilitate more precise interpretation of the experimental data taken at SASE FELs. In this paper, we present an investigation into the fluctuations of pulse duration, spectral distribution, arrival time and pulse energy of SASE XUV pulses at FLASH, both on a shot-to-shot basis and on average over many pulses. With the aid of simulations, we derived scaling laws for these parameters and disentangled the statistical SASE fluctuations from accelerator-based fluctuations and measurement uncertainties.

3.
J Synchrotron Radiat ; 25(Pt 1): 26-31, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271747

RESUMO

The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa