Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 31(6): 475-484, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27984667

RESUMO

RATIONALE: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2 ) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer-Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. METHODS: The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual-detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. RESULTS: The modified EA-Cr/HTC reactor setup showed an overall H2 -recovery of more than 96% for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via two-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. CONCLUSIONS: The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment. Copyright © 2016 John Wiley & Sons, Ltd.

2.
Environ Sci Technol ; 51(1): 446-454, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936635

RESUMO

Multielemental stable isotope analysis of persistent organic pollutants (POPs) has the potential to characterize sources, sinks, and degradation processes in the environment. To verify the applicability of this approach for source identification of hexachlorocyclohexane (HCHs), we provide a data set of carbon, hydrogen, and chlorine stable isotope ratios (δ13C, δ2H, δ37Cl) of its main stereoisomers (α-, ß-, δ- and γ-HCHs) from a sample collection based on worldwide manufacturing. This sample collection comprises production stocks, agricultural and pharmaceutical products, chemical waste dumps, and analytical-grade material, covering the production time period from the late 1960s until now. Stable isotope ratios of HCHs cover the ranges from -233‰ to +1‰, from -35.9‰ to -22.7‰, and from -6.69‰ to +0.54‰ for δ2H, δ13C, and δ37Cl values, respectively. Four groups of samples with distinct multielemental stable isotope fingerprints were differentiated, most probably as a result of purification and isolation processes. No clear temporal trend in the isotope compositions of HCHs was found at the global scale. The multielemental stable isotope fingerprints facilitate the source identification of HCHs at the regional scale and can be used to assess transformation processes. The data set and methodology reported herein provide basic information for the assessment of environmental field sites contaminated with HCHs.


Assuntos
Cloro , Hexaclorocicloexano , Carbono , Isótopos de Carbono , Monitoramento Ambiental , Hidrogênio , Isótopos
3.
Rapid Commun Mass Spectrom ; 29(14): 1343-50, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26405796

RESUMO

RATIONALE: The development of compound-specific chlorine isotope analysis (Cl-CSIA) is hindered by the lack of international organochlorine reference materials with isotopic compositions expressed in the δ(37) Cl notation. Thus, a reliable off-line analytical method is needed, allowing direct comparison of the δ(37) Cl values of molecularly different organic compounds with that of ocean-water chloride, to refer measurement results to a Standard Mean Ocean Chloride (SMOC) scale. METHODS: The analytical method included sealed-tube combustion of organochlorines, precipitation and subsequent conversion of formed inorganic chlorides into methyl chloride (CH3 Cl) for the determination of δ(37) Cl values by Dual-Inlet Isotope Ratio Mass Spectrometry (DI-IRMS). A sample preparation step most sensitive to the sample size - dissolution of the inorganic copper chlorides formed by combustion of organochlorines - was identified. RESULTS: Recovery of 94 ± 5% of chlorine was reached by applying determined optimal conditions for the dissolution, implying good external precision of δ(37) Cl values (-0.18 ± 0.03‰, 1σ, n = 3). Validation of the optimized method by the analysis of the produced and initial CH3 Cl samples with known δ(37) Cl values vs SMOC resulted in a difference of 0.11 ± 0.04‰ (1σ, n = 3), confirming the external precision and accuracy of the entire method. CONCLUSIONS: The efficiency of the sample preparation method for CH3 Cl-DI-IRMS analysis is independent both of the chemical structure of the chlorinated compound and of the amount of chlorine in the sample. This method has the potential to be applied to a broad range of chlorinated organic compounds, e.g. reference material for the calibration of methods for Cl-CSIA against SMOC.


Assuntos
Cloro/análise , Hidrocarbonetos Clorados/análise , Espectrometria de Massas/métodos , Água do Mar/análise , Calibragem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isótopos/análise , Solubilidade
4.
J Chromatogr A ; 1355: 36-45, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24980091

RESUMO

In order to evaluate the potential of compound-specific stable carbon isotope analysis (CSIA) for tracking organochlorine pesticides in soil systems, sample pre-treatment methods have to be developed, which can provide recoveries sufficient for low detection limits without altering the isotope ratio of the target compounds. In this study we tested the compatibility of CSIA with user- and environmentally friendly extraction methods, including the Quick, Easy, Cheap, Effective, Rugged and Safe procedure (QuEChERS), Ultrasonic Assisted Extraction (USE) and Focused Ultrasonic Extraction (FUSE), as well as clean-up methods, including sulfuric acid clean-up and Florisil(®) column chromatography for hexachlorocyclohexanes (HCHs), p,p'-dichlorodiphenyltrichloroethane (DDT) and their environmental metabolites (chlorinated benzenes, dichlorodiphenyldichloroethylene - DDE and dichlorodiphenyldichloroethane - DDD) in soils. We optimized the extraction methods for maximum recovery and pre-concentration. At optimal conditions, all extraction methods and clean-up procedures, as well as the pre-concentration of the extract by solvent evaporation, led to insignificant changes in carbon isotope ratios of the target compounds. We modified the USE procedure to increase the volume of withdrawn organic extract, resulting in a higher pre-concentration of the target compounds by the subsequent solvent evaporation step. This Modified Ultrasonic Assisted Extraction (MUSE) was the most suitable procedure, and it was validated for the determination of carbon isotope ratios of the target compounds using two different types of soil matrices. The method could be applied to analyze carbon isotope ratios of HCHs, DDT, and their chlorinated metabolites in soil samples with concentrations ranging from 0.3 to 0.8mg/kg. The analytical uncertainty of MUSE, incorporating both accuracy and precision, was ≤0.4‰.


Assuntos
Hidrocarbonetos Clorados/análise , Praguicidas/análise , Poluentes do Solo/análise , Carbono , Isótopos de Carbono/análise , DDT/análise , Diclorodifenil Dicloroetileno/análise , Hexaclorocicloexano/análise , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/metabolismo , Praguicidas/química , Praguicidas/metabolismo , Reprodutibilidade dos Testes , Solo , Poluentes do Solo/química , Solventes/química
5.
ACS Med Chem Lett ; 5(4): 373-7, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900843

RESUMO

Antimalarial hit 1 SR (TCMDC-134674) identified in a GlaxoSmithKline cell based screening campaign was evaluated for inhibitory activity against the digestive vacuole plasmepsins (Plm I, II, and IV). It was found to be a potent Plm IV inhibitor with no selectivity over Cathepsin D. A cocrystal structure of 1 SR bound to Plm II was solved, providing structural insight for the design of more potent and selective analogues. Structure-guided optimization led to the identification of structurally simplified analogues 17 and 18 as low nanomolar inhibitors of both, plasmepsin Plm IV activity and P. falciparum growth in erythrocytes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa